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Common Support (1)

• Common support ensures overlap in the distribution of
propensity scores between treated and nontreated groups.

• It does not require the shape of the distributions to be the same
(in contrast to random assignment, where distributions are
expected to be the same across groups).

• In the population, this is guaranteed by the assumption
0 < p(X) < 1. In finite samples, this assumption does not
automatically ensure common support.

Common support
The propensity score distributions for treated and nontreated
groups must overlap in terms of the range of values.
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Common Support (2)

Implication of common support for average effect estimation:

• For ATET: every treated observation should have a nontreated
match with a similar estimated propensity scores.

• For ATE: each treated and nontreated observation should have
matches in the other group.

• Graphical checks: histogram or density plots by treatment group
can assess overlap in estimated propensity scores.

4
4.7 Practical Issues 4.8 Continuous Treatments 4.9 Dynamic Effects 4.10 Mediation Analysis 4.11 Outcome Attrition



Violation of Common Support

• Common support is violated if no match with a sufficiently
similar propensity score exists in the other group.

• A common solution: trimming observations with extreme or
unmatched propensity scores.

Trimming
The removal of observations whose propensity scores lack overlap
between treated and nontreated groups to enforce common
support.

• Improves internal validity by reducing bias in the trimmed
sample.

• Reduces external validity, as estimates apply only to a
subpopulation.

• Always report the number or share of trimmed observations.
5
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Trimming Criteria: Density-Based

• Heckman, Ichimura, Smith, and Todd (1998) propose dropping
observations for which the estimated density of estimated
propensity score is (close to) zero in (at least) one of the
treatment groups.

• Estimate densities using kernel methods (e.g., Rosenblatt, 1956;
Parzen, 1962).

• Threshold can be data-driven (e.g., based on a quantile of
estimated densities).
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Trimming Criteria: Extreme Propensity Scores

• Crump et al. (2009) propose trimming extreme propensity scores.
• Suggested rule: retain only observations with p̂(Xi) ∈ [0.1, 0.9]
(minimizes the variance of ATE estimation under certain
conditions).

• Further alternatives: [0.05, 0.95] or [0.01, 0.99] - potential
trade-off concerning cut-off choice in terms of external validity
and variance.

• Dehejia and Wahba (1999) propose discarding all treated
observations with p̂(Xi) higher than the highest value among the
nontreated when estimating the ATET.

• For ATE estimation, also discard nontreated observations with
p̂(Xi) lower than the lowest value among treated.
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Sample-Size Dependent Trimming

• Trimming rules should be adapted to the sample size:
• In large samples, observations with extreme propensity score
values are more likely to find a match.

• Therefore, trimming becomes less necessary as n→ ∞.

• One possible approach: limit how much influence (weight) any
observation can have in a given sample when estimating E[Y(1)]
or E[Y(0)] → drop too influential observations.

Example: IPW estimation (see equation (4.42))
The weight for a treated unit is: Weighti =

Di/p̂(Xi)∑n
i=1 Di/p̂(Xi)

. This weight
increases as p̂(Xi) decreases. Fixing the maximum weight to 0.05
implies that no single unit should contribute more than 5% to
E[Y(1)], see e.g. Huber, Lechner, and Wunsch (2013).
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Match Quality (Covariate Balance)

• Match quality concerns whether the estimated propensity score
balances X across groups.

• Poor balance implies risk of treatment selection bias in causal
effect estimation.

Match quality
The extent to which propensity score adjustment (e.g., matching,
IPW) equalizes the distribution of X across treated and nontreated
groups.

• Reasons for poor match quality:
• Misspecified propensity score model⇒ use a more flexible model.
• Inadequate matching algorithm⇒ try a different algorithm.
• Lack of common support⇒ apply trimming.
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Verifying Covariate Balance: t-Test

A standard approach for assessing covariate balance is the
two-sample t-test (Welch, 1947):

• Test applied to each covariate Xk in matched or IPW-weighted
samples. Xmk denotes covariate k among matched (or weighted)
observations.

• Tests the null hypothesis: E[Xmk |D = 1] = E[Xmk |D = 0]
• Test statistics:

X̄m1k − X̄m0k√
V̂ar(Xm1k )

nm1 +
V̂ar(Xm0k )

nm0

(4.47)

• X̄m1k , X̄m0k : sample means in matched treated (m1) and nontreated
(m0) groups.

• nm1, nm0: number of matched treated and nontreated observations.
• V̂ar(Xm1k ), V̂ar(Xm0k ): sample variances of Xk in the matched groups.
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Verifying Covariate Balance: Distributional Test

Kolmogorov-Smirnov test

• Instead of testing for mean differences only, we may test for
distributional differences.

• Null hypothesis: each covariate Xk has the same distribution in
matched treated and nontreated groups.

• Successful balancing implies that the entire distribution of a
covariate (not just the mean) is equal across matched groups.
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Verifying Covariate Balance: Joint Testing

Joint regression-based test (Smith and Todd, 2005):

• Regress Xk on constant, D, p̂(X), higher-order terms, and
interactions of D and p̂(X) in the toal (rather than matched)
sample.

• If p̂(X) balances well, coefficients on D and its interactions with
p̂(X) should be close to zero.

• Null hypothesis: coefficients on D and its interactions with the
propensity score are jointly zero.

• Use an F-test to jointly test that all such coefficients are zero.
High p-value indicates good balance conditional on p̂(X).
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Verifying Covariate Balance: Accounting for Multiple Testing

• Testing many covariates (e.g., by t-tests) introduces a multiple
hypothesis testing problem.

• With α = 0.05 and 100 covariates, one may expect ≈ 5 false
rejections even if null holds for all.

• A few significant rejections do not necessarily imply imbalance,
as multiple testing increases the risk of obtaining false positives.

• To avoid this issue, apply joint tests (e.g., F-tests) across all
covariates.

• Regress each Xk on a constant and D among matched
observations.

• Test whether all D coefficients are jointly zero.
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Verifying Covariate Balance: Pseudo-R2 Check

Alternative joint test is to re-estimate the propensity score after
matching:

• Estimate Pr(D = 1|Xm) using the matched sample only, as in
Sianesi (2004).

• Check whether covariates still predict treatment assignment
after matching.

• The goodness of fit is measured by the pseudo-R2 from this
re-estimated propensity score model.

• Interpretation: a pseudo-R2 close to zero indicates good
covariate balance.

• Intuition: low predictive power of Xm for D implies Xm ⊥ D, i.e.,
balance.
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Verifying Covariate Balance: Standardized Differences

Issue with hypothesis tests: test statistics depend on sample size.
• t-statistic is a function of the matched sample sizes nm1 and nm0.
• As sample size grows, even negligible mean differences can lead
to rejection of the balancing hypothesis.

Standardized difference test (Rosenbaum and Rubin, 1985):
• Measures mean differences relative to the pooled variance in
the original samples.

• Test statistics: 100 ·
X̄m1k − X̄m0k√
V̂ar(X1k)+V̂ar(X

0
k)

2

(4.48)

• Insensitive to the number of matched observations.
• V̂ar(X1k) and V̂ar(X0k) refer to variances in the original treated and
nontreated samples (not matched).

• Thresholds (e.g., 10 or 20) used to judge balance; absolute
differences above the threshold suggest imbalance.
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Multivalued Treatments: Identification

• The selection-on-observables framework extends to multivalued
treatments D ∈ {0, 1, 2, . . . , J}.

• Treatment effects can be identified by pairwise comparisons:
D = d vs. D = d′.

Identifying assumptions (Imbens, 2000)

{Y(d), Y(d′)}⊥D|X, Pr(D = d|X) > 0,

Pr(D = d′|X) > 0, X(d) = X(d′) = X (4.49)

Under these assumptions you can:

• Identify ATE and ATET for d vs. d′.
• Apply identification strategies from the binary case (regression,
matching, IPW, DR). How?
1. Replace D with I{D = d} and 1− D with I{D = d′}.
2. Use Pr(D = d|X) as p(X) and Pr(D = d′|X) as 1− p(X) 17
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Estimation with Multivalued Treatments

• As in the binary case, estimation via regression, matching, IPW,
or DR can be

√
n-consistent and semiparametrically efficient if

plug-in parameters are estimated nonparametrically (Cattaneo,
2010).

• Propensity score matching can be applied after estimating
propensity scores Pr(D = d|X) and Pr(D = d′|X) (Lechner, 2001).

Notice:

• If assumptions (4.49) hold for all d,d′, then
{Y(0), ..., Y(J)} ⊥ D | X.

• This full selection-on-observable assumption is stronger then a
pair-wise version and must be carefully assessed in applications.
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Continuous Treatments: Setup

• If D is continuously distributed (e.g., training hours), then
Pr(D = d|X) becomes the conditional density f(D = d|X).

Generalized propensity score
Conditional density of treatment given covariates: f(D = d | X)

• Replace Pr(D = d|X) > 0 with f(D = d|X) > 0 in (4.49).
• If these conditions hold for all d, effects across the full
treatment range are identified.
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Continuous Treatments: Estimation

• Estimate causal effects via parametric or nonparametric
regression of Y on D and X:

• Estimate µd(x), µd′(x), and E[µd(x)− µd′(x)] to estimate ATE of
D = d versus D = d′.

• Estimate ∂µd(x)
∂d to estimate marginal treatment effect ∂E[Y(d)]

∂d .
• Alternatively, regress Y on D and f̂(D|X) (Hirano and Imbens,
2005), or use stratification (Imai and van Dyk, 2004).

• IPW estimation replaces indicators like I{D = d} with kernel
weights (Flores et al., 2012; Galvao and Wang, 2015):

• Define kernel weight: K((D− d)/h)/h with bandwidth h and
symmetric kernel K.

• Weight observations by closeness of D to d.

• ATE identified by: ∆ = limh→0 E
[
Y·K( D−d

h )/h
f(D=d|X) −

Y·K
(
D−d′
h

)
/h

f(D=d′|X)

]
• Also doubly robust (DR) approaches (Kennedy et al., 2017) can be
applied to estimate effects of continuous treatments. 20
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Distributional Treatment Effects

• Selection on observables permits assessing effects on the entire
outcome distribution, not just averages.

• To do so, replace Y with indicator function I{Y ≤ y}, e.g. in IPW
expressions.

Distributional effect
FY(1)(y)− FY(0)(y): effect on the treatment on the share of subjects
with outcome ≤ y, where FY(d)(y) = E[I{Y(d) ≤ y] denotes the
cumulative distribution function of potential outcome Y(d).

Example
FY(0)(4,000) = 0.5: 50% would earn ≤ €4,000 without treatment.

• DiNardo, Fortin, and Lemieux (1996) and Chernozhukov,
Fernández-Val, and Melly (2013) discuss the estimation of
potential outcome distributions. 21
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Quantile Treatment Effects (1)

• QTEs correspond to treatment effects at specific ranks (e.g.,
median, quartiles) of the outcome distribution.

• Useful for studying effect heterogeneity across ranks of outcome
distribution (e.g., low- versus high-income groups).

Requirements for QTEs
• Outcome Y must be continuously distributed.
• Distribution must be strictly increasing across ranks of interest.

Example
If no one earns between 2,000 and 2,500 EUR, ranks in this interval
are undefined.
⇒ No one-to-one mapping between quantiles and ranks.
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Quantile Treatment Effects (2)

• The quantile function of a potential outcome Y(d) is the inverse
of its CDF:

F−1Y(d)(τ), τ ∈ (0, 1), d ∈ {0, 1}

• τ : rank in the outcome distribution (e.g., τ = 0.5 is the median).

Identification via IPW (Firpo, 2007)
Under selection on observables, quantiles can be identified by
solving: F−1Y(d)(τ) = miny E

[
D

Pr(D=d|X) · (Y− y) · (τ − I{Y− y < 0})
]

• The loss function (Y− y) · (τ − I{Y− y < 0}) targets quantiles
(not means).
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Quantile Treatment Effects (3)

QTE
The quantile treatment effect at rank τ is: ∆(τ) = F−1Y(1)(τ)− F−1Y(0)(τ)

It compares outcome values at the same rank under treatment and
nontreatment.
Example

Cumulative

distribution

function

Outcomey y ʹ

y ʹ– y  = Δ(τ)

FY (0)(y) FY (1)(y)

τ The figure shows: at rank τ ,
quantiles y = F−1Y(0)(τ)
and y′ = F−1Y(1)(τ)
⇒ QTE = y′ − y.
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Dynamic Treatment Effects

• Dynamic treatment effects: effects of sequences of treatments
over time (Robins, 1986, Robins, Hernan, and Brumback, 2000).

• Examples: courses (language course followed by IT course),
medical interventions (surgery followed by physiotherapy).

• Control for time-varying confounders affecting outcome and
treatment over different periods.

• Sequential selection-on-observables assumes random
assignment conditional on past information.

Average treatment effect of a sequence

∆(d2,d
′
2) = E[Y2(d2)− Y2(d′2)] (4.53)

Example
ATE of (1=language, 2=IT) vs. no training: d2 = (1, 2), d′2 = (0, 0)
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Sequential Selection on Observables

• Covariates Xt evolve over time and may be affected by past
treatments/outcomes.

• X0: pre-treatment.
• X1: observed after D1, before D2, may include Y1.
• Confounding is dynamic: must control for post-treatment
covariates.

Sequential selection-on-observables assumption

Y2(d2)⊥D1|X0 and Y2(d2)⊥D2|D1, X0, X1
Pr(D1 = d1|X0) > 0, Pr(D2 = d2|D1, X0, X1) > 0 (4.54)
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Graphical Illustration

• No unobserved confounding of (D1, Y2) given X0 and (D2, Y2)
given (D1, X0, X1).

• D2 may depend on D1: IT training more likely after language
course.

D1

X0 D2

X1

Y2

Figure 4.12: Sequential conditional independence with posttreatment
confounders 28
4.7 Practical Issues 4.8 Continuous Treatments 4.9 Dynamic Effects 4.10 Mediation Analysis 4.11 Outcome Attrition



Regression and IPW

• Nested regression approach:

∆(d2,d
′
2) = E[E[E[Y2|D2 = d2, X0, X1]|D1 = d1, X0]
− E[E[Y2|D2 = d′2, X0, X1]|D1 = d′1, X0]] (4.55)

• IPW approach using sequential propensity scores (Lechner,
2009):

∆(d2,d
′
2) = E

[
Y · I{D1 = d1}I{D2 = d2}
pd1(X0)pd2(D1, X0, X1)

− Y · I{D1 = d′1}I{D2 = d′2}
pd′1(X0)pd

′
2(D1, X0, X1)

]
, (4.56)

where pd1(X0) = Pr(D1 = d1|X0) and
pd2(D1, X0, X1) = Pr(D2 = d2|D1, X0, X1) are the propensity scores in
the two periods.
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Doubly Robust Approach

• DR approach combining outcome models and sequential
propensity scores (Robins, 2000):

∆(d2,d
′
2) = E[ψd2 − ψd

′
2 ], (4.57)

where ψd2 = I{D1 = d1}I{D2 = d2}(Y2 − µY2(d2, X0, X1))
pd1(X0)pd2(d1, X0, X1)

+
I{D1 = d1}(µY2(d2, X0, X1)− νY2(d2, X0))

pd1(X0)
+ νY2(d2, X0),

with µY2(d2, X0, X1) = E[Y2|D2 = d2, X0, X1] and
νY2(d2, X0) = E[E[Y2|D2 = d2, X0, X1]|D1 = d1, X0] being the (nested)
conditional mean outcomes.
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Stronger Assumptions

• If D2⊥Y2(d2)|D1, X0, we may drop X1 from models.
• Reduced data requirement: no posttreatment covariates needed
to be controlled for.

D1

X0 D2

Y2

Figure 4.13: Sequential conditional independence without posttreatment
confounders
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Simplified DR Approach

• DR expression simplifies to:

ψd2 =
I{D1 = d1}I{D2 = d2}(Y2 − µY2(d2, X0))

pd1(X0)pd2(d1, X0)
+ µY2(d2, X0) (4.58)

• Equivalent to multivalued discrete treatment evaluation.

32
4.7 Practical Issues 4.8 Continuous Treatments 4.9 Dynamic Effects 4.10 Mediation Analysis 4.11 Outcome Attrition



When Post-treatment Covariates Matter

• Long time gaps between treatments may invalidate simpler
assumptions.

• Individual characteristics may change over time and act as
confounders jointly affecting the second treatment and the
outcome (e.g., health, labor behavior).

• In such cases, controlling for X1 is necessary to make identifying
assumptions more credible.
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Causal Mediation Analysis

How can we assess the causal mechanisms through which the
treatment affects the outcome?

Mediation analysis (Robins and Greenland, 1992, Pearl, 2001)
Disentangles a total treatment effect into one or several indirect
effects (via intermediate variables), as well as a direct effect.

• Indirect effects operate through one or several intermediate
variables that are commonly referred to as mediators.

• Direct effect includes any causal mechanisms not operating
through the mediators.
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Controlled Direct Effect

Controlled direct effect
Net effect of D1 obtained by controlling for the mediator D2, when
setting it to the same value for everyone in the population.

• The sizes of the direct effects may differ across values of D2 if
there are interaction effects between D1 and D2.

Example
• Assessing the effect on earnings of a sequence of training
programs (job application training, IT course).

• Direct effect of the job application training net of participation
in the IT course is obtained by setting the latter to zero.

• This implies assessing the treatment effect ∆(d2,d
′
2) with

sequences d2 = (1, 0) and d′2 = (0, 0).
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Natural Direct and Indirect Effects (1)

Natural direct effect
Effect of D1, conditional on the value of the mediator D2 that is
naturally chosen as a reaction to D1.

Natural indirect effect
Effect operating through the choice of D2 in reaction to D1.

• The naturally chosen value of D2 under a specific value of D1 may
vary across individuals (e.g., as a function of their preferences).

• Depending on the empirical context, either controlled or natural
effects may be more relevant.
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Natural Direct and Indirect Effects (2)

• Let D1 be a binary treatment and D2 a binary mediator.
• Extend potential outcome notation:

• D2(d1): potential mediator as a function of d1 ∈ {0, 1}.
• E[Y2(d1,D2(d′1))]: potential outcome conditional on D1 = d1 and the
potential mediator under D1 = d′1 (with d1,d′1 ∈ {0, 1}).

• Total ATE of D1 on Y2:

∆(D1) = E[Y2(1,D2(1))− Y2(0,D2(0))] (4.59)
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Natural Direct and Indirect Effects (3)

• The total effect of D1 is the sum of the natural direct and indirect
effects defined based on opposite treatment states:

∆(D1) = E[Y2(1,D2(1))− Y2(0,D2(1))]︸ ︷︷ ︸
=θ(1)

+ E[Y2(0,D2(1))− Y2(0,D2(0))]︸ ︷︷ ︸
=δ(0)

= E[Y2(1,D2(0))− Y2(0,D2(0))]︸ ︷︷ ︸
=θ(0)

+ E[Y2(1,D2(1))− Y2(1,D2(0))]︸ ︷︷ ︸
=δ(1)

(4.60)

• θ(1) and θ(0): natural direct effects of D1.
• δ(1) and δ(0): natural indirect effects.

• θ(1) and θ(0) (and δ(1) and δ(0)) may differ if there are
interaction effects between D1 and D2.

• Direct and indirect effect sum up to the total effect if interaction
effects between D1 and D2 are either accounted for in the direct
or the indirect effect, but not both at the same time.
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Identifying Assumptions

• Y2(1,D2(0)) and Y2(0,D2(1)) are never observed.
⇒ Identification of natural direct and indirect effects requires
stronger assumptions than for controlled or dynamic effects.

Assumption 1 (conditional independence of the treatment):

{Y2(d2),D2(d
′
1)}⊥D1|X0 for d2 = (d1,d2) and d1,d′1,d2 ∈ {0, 1, . . . , J} (4.61)

Assumption 2 (conditional independence of the mediator):

Y2(d2)⊥D2|D1, X0 for d2 = (d1,d2) and d1,d2 ∈ {0, 1, . . . , J}

Assumption 3 (common support):

Pr(D1 = d1|X0) > 0 and Pr(D2 = d2|D1, X0) > 0 for d1,d2 ∈ {0, 1 . . . , J}

• Here we allow for a multivalued, discrete treatment.
40
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Regression and IPW

Identification based on nested conditional mean outcomes (may be
implemented by regression; Imai, Keele, and Yamamoto, 2010)

E[Y2(d1,D2(d′1))] = E[E[µY2(d1,D2, X0)|D1 = d′1, X0]], (4.62)

where µY2(D1,D2, X0) = E[Y2|D1,D2, X0] is the conditional mean
outcome, and d1, d′1 are specific values of the first treatment.

IPW-based identification (Hong, 2010)

E[Y2(d1,D2(d′1))] = E
[
I{D1 = d1} · pD2(d′1, X0) · Y2

pd1(X0) · pD2(d1, X0)

]
, (4.63)

where pd2(D1, X0) = Pr(D2 = d2|D1, X0) is the propensity score of
the mediator.
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DR Approach

DR identification (combines IPW with conditional mean outcomes;
Tchetgen Tchetgen and Shpitser, 2012)

E[Y2(d1,D2(d′1))] = E[ψd1,d
′
1 ],

with ψd1,d
′
1 =

I{D1 = d1} · pD2(d′1, X0)
pd1(X0) · pD2(d1, X0)

· [Y2 − µY2(d1,D2, X0)]

+
I{D1 = d′1}
pd′1(X0)

· [µY2(d1,D2, X0)− E[µY2(d1,D2, X0)
∣∣∣D1 = d′1, X0]]

+ E[µY2(d1,D2, X0)|D1 = d′1, X0]
(4.64)
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Avoiding Mediator Probability/Density

Alternative IPW-based identification (Huber, 2014a)

E[Y2(d1,D2(d′1))] = E
[
I{D1 = d1} · pd

′
1(D2, X0) · Y2

pd1(D2, X0) · pd
′
1(X0)

]
(4.65)

• When the mediator is continuously distributed and/or consists
of several variables, estimating pD2(d1, X0) may be cumbersome.

• pd2(D1, X0) can be avoided by including an alternative treatment
propensity score pd1(D2, X0) = Pr(D1 = d1|D2, X0).
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Path-Wise (Partial Indirect) Effect (1)

• Assuming as-good-as-random assignment of mediator D2 given
only treatment D1 and baseline covariates X0 may be too strong.

• In many cases, posttreatment covariates X1 also need to be
controlled for.
⇒ Replace Y2(d2)⊥D2|D1, X0 with Y2(d2)⊥D2|D1, X0, X1.
⇒ Additional assumption: No confounders that jointly affect (i)
D1 and X1, given X0 and (ii) X1 and D2 or Y2, given D1, X0.

• However, additional assumptions are not sufficient for the
nonparametric identification of natural direct and indirect
effects - is only obtained if X0 and D1 are sufficient to control for
confounders of D2 and Y2 (Avin, Shpitser, and Pearl, 2005).

• However, under the additional assumptions, we can identify the
path-wise effect of D1 on Y2 directly operating via D2, i.e.,
D1 → D2 → Y2.
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Path-Wise (Partial Indirect) Effect (2)

• Path-wise (or partial indirect) effect with a binary treatment
based on IPW:

δp(d1) = E
[

Y2 · I{D1 = d1}
Pr(D1 = d1|D2, X0, X1)

· Pr(D1 = d1|X0, X1)
Pr(D1 = d1|X0)

×
(
Pr(D1 = 1|D2, X0, X1)
Pr(D1 = 1|X0, X1)

− 1− Pr(D1 = 1|D2, X0, X1)
1− Pr(D1 = 1|X0, X1)

)]
, (4.66)

with δp(d1) denoting the pathwise effect of D1 → D2 → Y2.

• δp(d1) represents only a partial indirect effect because it omits
any indirect impact that operates via X1 (i.e., D1 → X1 → D2 → Y2).

• For this reason, it does not coincide with the natural indirect
effect δ(d1).
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Full Natural Indirect Effects with Posttreatment Confounders (1)

• To identify the full natural indirect effect, we need to impose
further assumptions, such as:

No interaction effects between D1 and D2 (Robins, 2003)

• Effect of the treatment does not depend on that of the mediator
and vice versa.

• For a binary treatment: Y(1,m)− Y(0,m) = Y(1,m′)− Y(0,m′) for
any distinct mediator values m ̸= m′.

• Unattractive in many empirical contexts, as it severely restricts
effect heterogeneity.

Homogeneous treatment-mediator interaction effect (Imai and
Yamamoto, 2013)

• Relaxes the assumption above, but assumes interaction effect to
be the same for different subjects.
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Full Natural Indirect Effects with Posttreatment Confounders (2)

Zero average interaction effect (Tchetgen Tchetgen and
VanderWeele, 2014)

• Average interaction effects of X1 and D2 on Y2 are zero.

Independence or known association of X1(1) and X1(0) (Robins and
Richardson, 2010; Albert and Nelson, 2011)

• Potential values of X1 under treatment and nontreatment are
independent or the form of their statistical association is known.

Homogeneous path effects given X0 (Xia and Chan, 2021)

• Given X0, average effects operating via the paths D1 → Y2 and
D1 → X1 → Y2 are homogeneous across values of M(0).

⇒ All assumptions impose specific constraints (to be scrutinized in
empirical contexts).
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Outcome Attrition and Posttreatment Sample Selection

• Problem: outcome of interest is observed only for a nonrandom
subsample in the data.

• Outcome attrition:
• Outcome is measured in a follow-up survey, but some participants
cannot be reinterviewed (e.g., due to relocation or refusal).

• Posttreatment sample selection:
• The outcome is observed only conditional on some other
posttreatment variable (e.g., wages only if employed).

• Sample selection and outcome attrition can create bias in
causal effect estimation—even if treatment is randomized.

• Are there conditions that permit us to fix this problem?
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Missing at Random (MAR) Assumption (1)

• Impose a selection-on-observables assumption with respect to
outcome attrition/sample selection:

Missing at random (MAR) assumption (Rubin, 1976)
Outcome attrition/sample selection is as good as random,
conditional on observed information (e.g., covariates, treatment).

• Under the following assumptions, we can assess the ATE of the
(possibly multivalued) treatment D1:

Y2(d1)⊥D1 | X0 and Y2(d1)⊥D2 |D1, X0, X1
Pr(D1 = d1 | X0) > 0 and Pr(D2 = d2 |D1, X0, X1) > 0 (4.67)

• D2 is a binary indicator of whether the outcome is observed.
• Y is known only if D2 = 1, but unknown if D2 = 0.
• The potential outcome Y2(D1) is a function of D1 only, but not of
the indicator for its observability, D2. 50
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Missing at Random (MAR) Assumption (2)

Figure 4.14: Causal paths under sequential conditional independence

D1

X0 D2

X1

Y2

• Causal graph satisfies the assumptions on the previous slide.
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Using MAR to Identify the ATE

• The conditions in expression (4.67) are similar to those
suggested for dynamic treatment effects.

• Key difference: We now assume that Y2(d1)⊥D2|D1, X0, X1.
• This implies that D2 does not affect Y, as it is not a treatment.
• Also implies: D2 is not associated with unobserved characteristics
affecting Y, conditional on covariates X0, X1 and treatment D1.

• Apply the identification results for dynamic treatment effects for
assessing treatment effects under outcome attrition or sample
selection.

• Simply set D2 = 1 in any conditional mean outcome and
propensity score.
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Simplified Confounding

• The framework simplifies if conditioning on X1 is not required.
• Then, outcome attrition/sample selection is as good as random
given treatment D1 and baseline covariates X0 alone.

• In this case:
• We can drop X1 from the assumptions in expression (4.67).
• Any conditional mean outcomes or propensity scores in the
expressions for the identification of the ATE no longer require X1.

• Simplification is unrealistic when there is a substantial time lag
between the treatment and the measurement of the outcome.

• In these scenarios, posttreatment confounders affecting both D2
(e.g., employment) and Y2 (e.g., wage) likely exist.
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