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Causal Machine Learning (CML) for Covariate Selection

• Traditional methods assume that appropriate set of covariates X
is known and preselected by the researcher:

• Requires contextual knowledge about which covariates to include.
• Risk of ad hoc selection leading to incorrect p-values and
confidence intervals.

• Causal machine learning (CML):
• Controls for covariates in a data-driven way.
• Provides valid inference (e.g., p-values, confidence intervals) under
specific assumptions.

• Particularly useful in high-dimensional data with many potential
covariates (wide data) where manual covariate selection is
complicated or infeasible.
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Causal Machine Learning (CML) for Covariate Selection

• Data-driven covariate selection does not remove the need for
fundamental identification assumptions in causal analysis.

• CML can be applied if there is a subset of covariates that suffices
to effectively tackle confounding but is a priori unknown.

• Assumption: A limited subset of covariates permits controlling
for the most important confounders.

• If this assumption holds, CML can be:
• Approximately unbiased in sufficiently large samples (bias is
negligibly close to zero).

•
√
n-consistent, even if confounding is not perfectly controlled for.

• Beyond estimating average effects, CML can detect effect
heterogeneities across subpopulations defined by covariates X.
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Double Machine Learning (DML)

• Double machine learning (DML) is a CML approach for estimating
the average treatment effect (ATE) or other causal effects.

• DML relies on Neyman (1959)-orthogonal functions for treatment
effect estimation.

• Neyman-orthogonality implies that treatment effect estimation
is relatively robust to approximation errors in the estimation of:

• Treatment propensity score p(X).
• Conditional mean outcomes µ1(X) and µ0(X).

• Doubly robust (DR) estimators satisfy this robustness property.
• Advantage:

• By incorporating both µ1(X), µ0(X) and p(X), approximation errors
enter multiplicatively into the estimation problem.

• Therefore, small errors in either become negligible when
multiplied.
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Predictive ML vs. Causal ML

• CML is conceptually different from predictive machine learning.
• Aim of predictive ML: Accurately predict an outcome based on
minimizing the prediction error (e.g., mean squared error).

• Causal effects of any of the predictors cannot be learned from
this forecasting approach:

• Correlation between treatment D and covariates X generally leads
to a biased causal effect estimate of D on outcome Y.

• Even without such a correlation, bias can arise if the causal effect
of D on Y is small relative to the importance of X for predicting Y.
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Role of Machine Learning in DML

• In DML, machine learning is not directly applied to treatment
effect estimation.

• Instead, it predicts plug-in parameters, p(X), µ1(X), and µ0(X).
• Machine learning is used to separately predict:

• D as a function of X.
• Y among the treated as a function of X.
• Y among the nontreated as a function of X.

• This is motivated by the fact that covariates X are used only to
tackle confounding, not for estimating causal effects.

• The causal effect of D is estimated using the sample analog of
equation (4.45).
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Lasso Regression (1)

• Both OLS and lasso regression minimize the sum of squared
residuals.

• Key difference: Lasso regression (Tibshirani, 1996) includes a
penalty term λ on the sum of the absolute values of the slope
coefficients.

• For λ = 0, lasso regression is equivalent to OLS.
• Purpose of penalization:

• Constrain the influence of regressors when predicting the outcome.
• Optimally balance bias and variance by shrinking the absolute
coefficients of less important regressors toward zero.

• Lasso regression may even shrink some coefficients exactly to
zero, effectively dropping irrelevant/less relevant regressors
from the model.
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Lasso Regression (2)

For predicting µ1(X), lasso regression solves the following penalized
minimization problem to obtain the coefficients:

(α̂, β̂1, . . .) = arg min
α∗,β∗

1 ,β
∗
2 , ...

∑
i:Di=1

(Yi − α∗ − β∗
1 Xi1 − β∗

2 Xi2 − . . .)2 + λ

p∑
j=1

|β∗
j | (5.1)

• p: Number of regressors (including higher-order and interaction
terms of X).

• λ: Nonnegative penalization term on the sum of absolute slope
coefficients.

• | · |: Absolute value.
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Choosing λ via K-Fold Cross-Validation

• λ may be chosen by a cross-validation procedure.
• Determines the optimal amount of shrinkage that minimizes the
MSE for outcome prediction among candidate values for λ.

• K-fold cross-validation:
• Observations are randomly divided into K nonoverlapping subsets.
• k ∈ {1, . . . , K} is a specific subset of observations, and ki is the
subset in which observation i is situated.

• Select λ that minimizes:∑
i:Di=1

[Yi − µ̂1,−ki(Xi)]
2 (5.2)

where µ̂1,−ki(Xi) is the prediction of µ1(X) based on coefficients
estimated from observations not in i’s subset ki.
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Sample Splitting

• Use independent samples for estimating the plug-in parameters
p(X), µ1(X), and µ0(X) and the treatment effects.

• Process:
• Randomly divide the sample into two nonoverlapping folds.
• Estimate p(X), µ1(X), µ0(X) in the first fold.
• Predict plug-ins and estimate treatment effects (e.g., ATE) in the
second fold.

• Sample splitting avoids correlations between the two estimation
steps.

• For this reason, it prevents overfitting bias related to fitting the
models too much to the data points in a sample.
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Cross-Fitting

• In sample splitting, only part of the data is used to estimate the
causal effect, thus increasing the variance.

• This issue can be tackled by cross-fitting, which consists of
swapping the roles of the folds in a second estimation round:

• The second fold is used for obtaining the lasso coefficients for the
plug-in models.

• The first fold is used for treatment effect estimation.

• Compute the final effect estimate (e.g., ATE) by taking the
average of the estimates in either fold.
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Graphical Illustration

Figure 5.1: Sample splitting when estimating the ATE.
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Properties of DML with Cross-Fitting

√
n-consistency

• DML with cross-fitting can be
√
n-consistent and asymptotically

normal (Chernozhukov et al., 2018).
•
√
n-consistency requires that plug-in estimates of p(X), µ1(X)

and µ0(X) converge to true values at a faster rate than n−1/4.
• This rate is slower than

√
n but attainable by many machine

learning or deep learning algorithms under certain conditions.
• Asymptotic variance is unaffected by machine learning and
cross-fitting (not higher than if covariates X were known a priori).

• Standard errors can be computed using conventional asymptotic
approximations in large samples.

• TMLE (chapter 4.6) can also attain
√
n-consistency with the

machine learning and cross-fitting, see Zheng and van der Laan
(2011).
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Lasso Regression and Cross-Fitting

Approximate sparsity
Number of important predictors required to decently approximate
the plug-in parameters (up to minor approximation error) is small
relative sample size n.

• Lasso regression attains the n−1/4-rate requirement under
approximate sparsity (Belloni, Chernozhukov, and Hansen, 2014).

• With cross-fitting, the number of important covariates or
interaction/higher-order terms must be small relative to n.

• Without cross-fitting, the number of important covariates or
interaction/higher-order terms must be small relative to

√
n

(stronger condition).
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Partialling Out

Partialling out approach:

• Remove influence of covariates X on outcome Y and treatment D
(Robinson, 1988) prior to assessing the treatment effect.

• Process:
• Split data into two folds.
• In the first fold, use lasso regression or postlasso OLS to obtain
coefficient estimates for the models E[Y|X] and E[D|X].

• In the second fold, predict outcome residuals Y− E[Y|X] and
treatment residuals D− E[D|X].

• In the second fold, regress outcome residuals on treatment
residuals using OLS to estimate the ATE.

• Swap roles of the data sets and average the ATE over both folds.
•
√
n-consistent if postlasso-based estimators of E[Y|X] and E[D|X]

converge at least with rate n−1/4 to the respective true models.
17
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Introduction to Further Machine Learning Algorithms

Other machine learning methods:

• Share the idea of optimally trading off the bias and variance in
predicting the plug-in parameters p(X), µ1(X), µ0(X).

• Applicable in DML or partialling out approaches if they satisfy
regularity conditions like n−1/4-convergence.
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Ridge Regression and Elastic Nets

Ridge regression:

• Ridge regression (Tihonov, 1963) penalizes sum of squared
coefficients on regressors (L2 norm).

• Comparison of lasso and ridge regression:
• Ridge regression cannot shrink coefficients exactly to zero, while
lasso regression can (as it is based on an L1 norm).

• Thus, only lasso regression is able to perform variable selection.
• Depending on the data, either ridge or lasso regression might do
better for estimating p(X), µ1(X), µ0(X).

Elastic nets:

• Weighted average of lasso and ridge penalization (e.g., 60%
lasso, 40% ridge penalization).

• Might outperform any single method.
• Optimal weights can be determined via cross-validation.
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Decision Trees: Introduction

Decision trees (Morgan and Sonquist, 1963): recursively split the
covariate space (i.e., the set of possible values of X) into
nonoverlapping subsets.

• Tree structure:
• Nodes represent covariate values at which the sample is split.
• Leaves are terminal subsets where no further splitting occurs.

• Splitting process:
• Finds the split that entails the highest reduction in the summed
sums of squared residuals across subsets.

• Greedy approach: Split is optimal at the current stage without
assessing performance several splits ahead.

• Applied recursively: Subsets are split into further subsets.
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Decision Trees: Splitting Process Example (1)

Example
• Suppose migrant status is the most predictive element in X for
treatment assignment.

• Most migrants receive treatment (e.g., a language course), while
most natives do not.

• The sum of the migrant status-specific sum of squared residuals
is lower than the sum of squared residuals in the total sample:

∑
i:migrant=1

(Di − D̄migrant=1)
2 +

∑
i:migrant=0

(Di − D̄migrant=0)
2
<

n∑
i=1

(Di − D̄)2 (5.3)

• Migrant subset might be further split by age (e.g., < 50 vs. ≥ 50).
• Further splits are chosen to maximize additional reduction in the
summed sum of squared residuals across all subsets.
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Decision Trees: Splitting Process Example (2)

Example (cont.)
• Tree structures can be represented by regression equations:

Di = α̂+ β̂1I{migrant = 1, age < 50}+ β̂2I{migrant = 1, age ≥ 50}+ V̂i. (5.4)

• α̂: Average treatment in the reference category (e.g., natives).
• β̂1, β̂2: Differences in the treatment averages between the
respective other subset and the reference category.

• V̂i: Estimated residual of the treatment equation.

• Based on the coefficient estimates, the estimated propensity
score can be computed for each subset, e.g.:

p̂(migrant = 1, age < 50) = α̂+ β̂1
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Decision Trees: Stopping Rule

• Splitting continues until a predefined stopping rule is reached
(e.g., maximum subsets or minimum observations per subset).

• There is a variance-bias trade-off concerning the number of
splits in decision trees.

• More splits imply that the observations within a subset are more
homogeneous in terms of X, which reduces the bias.

• More splits also imply fewer observations per subset to estimate
conditional mean outcomes, which increases the variance.

• Use cross-validation to determine the optimal number of splits
that minimizes MSE by optimally trading off bias and variance.
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Decision Trees: Advantages and Disadvantages

• Advantages:
• Nonparametric method: Splitting does not impose functional form
assumptions about how D and X are associated.

• Greater model flexibility compared to a parametric approach like
lasso regression.

• Disadvantages:
• Estimated propensity score p̂(x) changes discontinuously across
subsets:

• p̂(x) is an unweighted average of the outcomes of all observations
with X values in the same subset as value x:

p̂(x) =
∑n

i=1 Di · I{Xi ∈ Lx}∑n
i=1 I{Xi ∈ Lx}

(5.5)

• Lx : subset (or leaf) in which value x is situated.
• Discontinuity results from the nonsmooth indicator functions in (5.5).

• High variance: Small data changes can entail substantially
different splitting rules.
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Bagged Trees (1)

Bagging (bootstrap aggregating; Breiman, 1996) mitigates the issue
that a single decision tree with many leaves likely suffers from a high
variance.

• Repeatedly draw bootstrap samples (with replacement) from the
original data.

• Estimate trees in each bootstrap sample.
• Predict treatment/outcome by averaging predictions from all
trees:

p̂(x) = 1
B

B∑
b=1

p̂b(x) = 1
B

B∑
b=1

∑n
i=1 Dbi · I{Xbi ∈ Lbx}∑n
i=1 I{Xbi ∈ Lbx}

(5.6)

• B: Number of bootstrap samples
• b: Indexes the parameters (e.g., treatments, covariates, leaves) in a
specific bootstrap sample b.
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Bagged Trees (2)

• Bagging has smaller variance than basing propensity score
estimation on a single tree.

• This procedure also implies p̂(x) is a smooth function of X:

p̂(x) =
n∑
i=1

wi(x)bagged · Di, (5.7)
where

wi(x)bagged =
1
B

B∑
b=1

I{Xi ∈ Lbx}∑n
j=1 I{Xbj ∈ Lbx}

• Weights wi(x)bagged are smooth in X due to averaging over the
indicator functions of individual trees.

• They depend on predictive power of regressors, reducing
sensitivity to weak predictors.
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Random Forests

Random forests (Ho, 1995; Breiman, 2001) are a further variation of
tree-based methods.

• Similar to bagged trees:
• Rely on repeatedly drawing samples from the original data for
estimating many trees.

• Aggregate (or average) predictions across trees.
• Random forest–based predictions can be represented by smooth
weighting functions.

• Key difference: At each split, only a random subset of covariates
is chosen as potential variables for splitting.

• Goal: Reduce correlation of tree structures across samples to
further reduce variance in the plug-in parameter estimation.
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Boosting and BARTs

Boosting (Freund and Schapire, 1997):

• Improves weak machine learners through sequential application.
• Process:

• Apply a weak learner (e.g., a simple decision tree with few splits).
• Compute residuals (e.g., difference between treatment and average
treatment in a leaf).

• Apply the learner to those residuals again.
• Repeat these steps many times.

• Permits flexible approximation of the association between the
covariates and the variable to be predicted.

Bayesian additive regression trees (BARTs) (Chipman, George, and
McCulloch, 2010):

• Includes regularization prior in boosting process: penalizes too
many splits in the tree structure to prevent excessive variance.
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Neural Networks

Neural networks (McCulloch and Pitts, 1943; Ripley, 1996):

• Fit a system of nonlinear regression functions to flexibly model
the influence of regressors/covariates on a variable to be
predicted (e.g. outcome).

• Regressors serve as inputs for nonlinear intermediate functions
(e.g., logistic or rectifier functions) called hidden nodes.

• The predicted values obtained from hidden nodes are inputs for
the output layer (the model of the predicted variable).

• Hidden nodes can be arranged in a single layer (shallow
network) or across multiple layers (deep network), where earlier
layers feed into later ones that ultimately generate the
outcome/treatment prediction.

• Several layers of hidden nodes allow modeling interactions.
• Trade-off: More hidden nodes and layers reduce bias, but
increase variance. 30
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Graphical Illustration

Figure 5.2: A neural network for treatment prediction.
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Extensions of Basic Neural Networks

Deep learning: Refined and extended versions of basic neural
networks.

• Convolutional neural networks (CNNs; LeCun et al., 1998):
• Learn autonomously to create relevant predictors from
unstructured data (e.g., images).

• Use filters to represent particular spatial patterns (e.g., edges) by
numeric features.

• Features are typically aggregated by a pooling step (e.g., by taking
average or maximum values over adjacent features).

• Filtering and pooling steps can be repeatedly applied to further
transform and aggregate the features.

• Refined features are used as regressors in a standard neural
network.

• Recurrent neural networks (RNNs):
• Allow feedback processes between hidden nodes in distinct
hidden layers when optimizing prediction. 32
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Support Vector Machines

Support vector machines (Boser, Guyon, and Vapnik, 1992):

• Nonlinearly transform covariates to fit a linear hyperplane in the
transformed covariate space.

• For a binary treatment D, the hyperplane accurately separates
the treatment values into two subsets:

• One with mostly treated units (D = 1).
• The other with mostly nontreated units (D = 0).

• The hyperplane is fitted to maximize the distance to the closest
observation from either subset.

• This maximizes confidence in the classification into
predominantly treated and nontreated subsets.
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Ensemble Methods

Ensemble methods (van der Laan, Polley, and Hubbard, 2007; Zhou,
2012):

• Combine several machine learning algorithms to make
predictions.

• Individual predictions of machine learning algorithms are
combined using a simple or weighted average.

• Optimal weights may be determined by cross-validation to
maximize predictive accuracy.

• Ensemble methods may outperform individual algorithms in
terms of prediction.
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