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Motivation

• A large share of empirical analyses is based on observational
rather than experimental data, e.g., from:

• Surveys (e.g., an online survey among customers).
• Company data (e.g., product features and sales in stores).
• Administrative data (e.g., information on labor market
performance and public transfer payments).

• Observational data often contain (one or more) outcomes,
covariates, and a treatment, which is not randomly assigned.

• In this case, the independence assumption {Y(1), Y(0)}⊥D is
generally implausible.

• Thus, a simple comparison of mean outcomes between treated
and untreated groups is inadequate for assessing the ATE.
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Selection on Observables (1)

Conditional independence/selection on observables
Observed covariates are rich enough to control for all confounders.
⇒ After conditioning on X, D is as good as randomly assigned.

• Assumption is satisfied if:
• We directly observe all covariates with an effect on both the
treatment and the outcome, or

• Controlling for the covariates blocks the effects of unobserved
confounders on the treatment, the outcome, or both.

• The plausibility of this assumption has to be scrutinized based
on theory, domain knowledge, or prior empirical findings.
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Selection on Observables (2)

Common support
For any combination of covariate values occurring in the
population, there are both treated and nontreated subjects.

• Rules out that covariates deterministically predict treatment.
• Implies that the propensity score p(X) = Pr(D = 1|X) (i.e., the
conditional treatment probability) is between zero and one.

No posttreatment covariates
Covariates are measured at or prior to treatment assignment and
are thus not affected by the treatment.

• Otherwise, controlling for them may condition away part of the
treatment effect or introduce collider bias.
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Selection on Observables (3)

• Formal assumptions for selection on observables:

{Y(1), Y(0)}⊥D|X, 0 < p(X) < 1, X(1) = X(0) = X
Conditional independence Common support No posttreatment covariates

(4.1)

D Y

X

Figure 4.1: Selection on observables

• Conditional on covariates X, no unobserved variables influence
both treatment D and outcome Y.
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Selection on Observables for the ATET

When identifying the ATET (rather than the ATE), the assumptions on
the previous slide may be relaxed:

• Conditional independence: Y(0)⊥D|X
• Applies only to the potential outcomes under nontreatment.

• Common support: p(X) < 1
• We only need to find nontreated individuals who are comparable
to the treated.

• Not necessary to find comparable treated observations for every
nontreated observation.

• Implies that p(X) may be zero for some values of X (i.e., only
nontreated observations exist with such values).

7
4.1 Selection on Observables 4.2 Linear, Series & Kernel Regression 4.3 Covariate Matching 4.4 PS Matching 4.5 IPW, EL & EB 4.6 DR



Conditional Average Treatment Effect (CATE)

• The conditional mean outcome given that treatment D is equal
to d ∈ {0, 1} and X = x is denoted by:

µd(x) = E[Y|D = d, X = x]

• Under the conditional independence assumption, µ1(x)− µ0(x)
identifies the causal effect among subjects with covariates X = x:

∆x = E[Y(1)|X = x]− E[Y(0)|X = x] = µ1(x)− µ0(x) (4.2)

• ∆x is the conditional average treatment effect (CATE).
• The ATE is identified by averaging CATEs across all values of x,
which the covariates X take in the population:

∆ = E[µ1(X)− µ0(X)] (4.3)
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ATET and ATENT

• In the selection-on-observables framework, treated and
nontreated groups may differ in X, and thus in causal effects.

• Effects for subpopulations, such as the treated, may be more
relevant than the ATE if not everyone can/should be treated.

• To identify the ATET, the CATEs are averaged across the covariate
values x appearing among the treated population:

∆D=1 = E[µ1(X)|D = 1]− E[µ0(X)|D = 1] = E[Y|D = 1]− E[µ0(X)|D = 1] (4.4)

• The second equality follows from the law of iterated expectations:
E[µ1(X)|D = 1] = E[E[Y|D = 1, X]|D = 1] = E[Y|D = 1]

• The ATENT is identified analogously:

∆D=0 = E[µ1(X)|D = 0]− E[µ0(X)|D = 0] = E[µ1(X)|D = 0]− E[Y|D = 0] (4.5)
9
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Linear Regression (1)

• To identify the CATE, we may be tempted to define the following
linear regression model for E[Y(D)|X] = E[Y|D, X] = µD(X):

µD(X) = α+ βDD+ βX1X1 + · · ·+ βXKXK (4.6)

• OLS estimate:

β̂D =
Ĉov(Yi,Di|Xi)
V̂ar(Di|Xi)

(4.7)

• Problem: In a selection-on-observables framework, D and X are
generally correlated.

• Implications of Cov(D, X) ̸= 0:
• Larger variance of β̂D.
• If the relationship between Y and X is misspecified, this bias spills
over to the estimation of βD: β̂D is biased and inconsistent.
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Linear Regression (2)

• Sources of misspecification:
• Omission of interaction terms between covariates (e.g., X1 · X2).
• Omission of higher-order terms (e.g., X21 ) capturing nonlinear
relationships.

• If treatment effects differ across X, omitting interactions between
D and X leads to a biased and inconsistent estimate of the CATE.

• In the linear model, E[βD] = E[∆x] = ∆.
• This implies that average effects are homogeneous across
values of X: CATE = ATE = ATET.

• Such homogeneity is often implausible in empirical applications.
• Prefer methods that allow for heterogeneous effects across X,
unless strong prior knowledge suggests homogeneous effects.
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Series Regression (1)

• To make the model more flexible, add interaction terms and
higher-order terms as additional regressors:

µD(X) = α+ βDD+ βX1X1 + · · ·+ βXKXK + βD,X1DX1 + . . .

+ βD,XkDXK + βX21X
2
1 + · · ·+ βX1X2X1X2 + . . . (4.8)

• Estimate µ̂1(X) by setting D = 1 and µ̂0(X) by setting D = 0.
• Compute the ATE by averaging the CATEs in the sample:

∆̂ =
1
n

n∑
i=1

[µ̂1(Xi)− µ̂0(Xi)] (4.9)

• Compute the ATET by averaging the CATEs in the subsample of
treated observations:

∆̂D=1 =
1
n1

∑
i:Di=1

[µ̂1(Xi)− µ̂0(Xi)] (4.10)
13
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Series Regression (2)

• Direct estimation of the ATE that avoids the two-step procedure
of computing CATEs and averaging (Imbens and Wooldridge,
2009):

µ̂D(X) = α̂+ β̂D︸︷︷︸
∆̂

Di + βX1Xi1 + · · ·+ βXKXiK + βD,X1Di · (Xi1 − X̄1) + · · ·

+ βD,XkDi · (XiK − X̄K) + βX21
X21 + · · ·+ βX1X2X1 · X2 + · · · (4.11)

• Or run two separate regressions for D = 1 and D = 0 without
including interaction terms between D and X:

µ1(X) = α1 + βX1,1X1 + · · ·+ βXK,1XK + βX21 ,1
X21 + · · ·+ βX1X2,1X1 · X2 + · · · ,

µ0(X) = α0 + βX1,0X1 + · · ·+ βXK,0XK + βX21 ,0
X21 + · · ·+ βX1X2,0X1 · X2 + · · · (4.12)

• Use these to obtain µ̂1(X) and µ̂0(X) and compute the ATE or
ATET based on averaging appropriately.
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Leave-One-Out Cross-Validation (1)

• Choosing the number of interaction and higher-order terms
involves a trade-off:

• Including too few terms may induce a bias in treatment effect
estimation due to poor approximation of µD(X).

• Including too many terms with little or no influence on µD(X) may
increase the variance due to overfitting.

• The problem with overfitting is that µ̂D(X) also captures part of
the sample-specific error terms, leading to poor generalization.

• The goal is to find a specification that optimally balances bias
and variance by minimizing the overall estimation error (MSE).

• Leave-one-out cross-validation can be used for this purpose.
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Leave-One-Out Cross-Validation (2)

• To avoid overfitting, leave observation i out when estimating
µ̂1,−i(Xi), and then compute the squared residual for i.

• Use this leave-one-out estimation for all treated observations
and sum up the squared residuals:∑

i:Di=1

[Yi − µ̂1,−i(Xi)]2 (4.13)

• Repeat procedure for different model specifications in terms of
p (number of interaction and higher-order terms).

• Select the one that minimizes the sum of squared residuals:

popt = argmin
p∈P

∑
i:Di=1

[Yi − µ̂1,−i,p(Xi)]2 (4.14)

• Finally, use optimal popt to estimate µ1(Xi) in the full sample:

µ̂1(Xi) = µ̂1,popt(Xi) (4.15)16
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Leave-One-Out Cross-Validation (3)

• The leave-one-out cross-validation procedure can also be
applied to the estimation of µ0(X).

• The number of terms in popt depends on the number of
observations and tends to grow as the sample size increases.

• Reason: Variance tends to decrease in larger samples, allowing
for greater model flexibility to reduce bias.

• However, the optimal number of terms grows at a slower pace
than the sample size.

• Otherwise, the bias would be reduced at a faster rate than the
variance, which is not optimal for minimizing the MSE.
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Global vs. Local Estimation Methods

• Global methods (e.g., linear or series regression) estimate µD(X)
for any covariate value X, even where no data is observed.

• However, predictions may be quite poor for X values far beyond
the observed data.

• In contrast, local methods do not permit such predictions.
• Idea: Estimate µ1(x) as a local average of treated observations
with values of X close to x (i.e., within a bandwidth h around x):

µ̂1,h(x) =
∑

i:Di=1 I{|Xi − x| ≤ h} · Yi∑
i:Di=1 I{|Xi − x| ≤ h} (4.16)

•
∑

i:Di=1
I{|Xi − x| ≤ h}: Number of treated observations with all

covariate values within the bandwidth.

• µ̂1,h(x) depends on the specific choice of the bandwidth h.
• All observations within the bandwidth get the same weight.
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Local Constant Kernel Regression

• A kernel function gives more weight to observations within the
bandwidth whose covariate values are closer to x.

• Local constant kernel regression or Nadaraya Watson (1964)
estimator:

µ̂1,h(x) =

∑n
i:Di=1K

(
Xi−x
h

)
· Yi∑n

i:Di=1K
(
Xi−x
h

) (4.17)

• Kernel function K(a) (with a being a specific value for Xi−x
h ) is

assumed to satisfy the following conditions:∫
K(a)da = 1

∫
aK(a)da = 0

∫
a2K(a)da < ∞

Integrates to 1 Symmetric around zero Bounded second order

• Examples of kernel functions satisfying these properties:
Standard normal kernel, Epanechnikov kernel, triangular kernel.
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Illustration of Kernel Weights

Figure 4.2: Standard normal kernel function
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Bandwidth Choice (1)

• Kernel functions assign greater weight to observations for which
Xi−x
h is close to zero.

• The weight is greater when Xi is close to x.
• The bandwidth h determines by how much the kernel weight
depends on the absolute difference of Xi − x:

• When h is large, weights are more uniform and less dependent on
Xi − x.

• When h is small, only observations with Xi close to x receive a
nonnegligible weight.

• Choosing h involves a bias–variance trade-off:
• A large h may entail substantial bias by giving large weights to
observations whose value Xi is far from x.

• A small h may entail high variance by giving weight to very few
observations (overfitting if their errors εi do not average out).
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Bandwidth Choice (2)

• Use leave-one-out cross-validation for finding the optimal
bandwidth hopt among a range of candidate values H:

hopt = argmin
h∈H

∑
i:Di=1

[Yi − µ̂1,−i,h(Xi)]2 (4.18)

• Then estimate µ1(Xi) using the full sample and the optimal
bandwidth hopt:

µ̂1(Xi) = µ̂1,hopt(Xi) (4.19)

• hopt tends to decrease as the sample size grows to reduce the
bias from relying on observations with X values too far from x.

• However, h should decrease at a slower pace than the growth of
the sample size.

• Otherwise, the variance would be too large relative to the bias,
which would not be optimal for minimizing the MSE of µ̂1(Xi).
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Local Linear Regression

• Local linear regression combines kernel-based weighting and
regression.

• Idea: Run a weighted linear regression of Yi on Xi within
treatment groups.

• The weight of each observation corresponds to K
(
Xi−x
h

)
.

• Observations with Xi close to x receive more weight.

• Permits estimating regression coefficients that are specific to
the covariate value x at which the CATE is to be computed.

• Compared to local constant regression, local linear regression
generally has a smaller bias at the boundaries of the data.
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Convergence Rates of Estimators

• Kernel-based estimates of µ1(X), µ0(X), and the CATE converge
slower than the fastest possible convergence rate of 1√

n .
• Reason: Kernel regression strongly depends on a subset of
observations with covariate values close to x.

• In contrast, linear regression achieves 1√
n by exploiting the

entire sample, but at the price of imposing linearity.
• Even though the CATE converges slower, the estimation of the
ATE and ATET can be

√
n-consistent under specific conditions.

• Reason: Averaging over many CATEs with different values of x
may average out the estimation errors at a specific x.

• Series regression estimates of µ1(X), µ0(X), and the CATE also
converge slower than 1√

n .
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Motivation of Matching

• Idea of matching: Find and match treated and nontreated
observations with similar (or, ideally, identical) covariate values.

• See e.g. Heckman, Ichimura, and Todd (1998), Heckman,
Ichimura, Smith, and Todd (1998), Dehejia and Wahba (1999), and
Lechner, Miquel, and Wunsch (2011).

• Goal: Create treated and nontreated groups that are comparable
in their covariate distributions.

• Matching with or without replacement: Can an observation serve
as a match only once or multiple times?

• Matching without replacement reduces variance by not reusing
observations but may increase bias due to lower match quality.

• Matching with replacement reduces bias by finding the closest
possible match; preferred when potential matches are limited.

• In what follows, we focus on matching with replacement.
26
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Pair Matching (1)

• Pair matching: For each observation in one treatment group, find
the best match in the other treatment group in terms of X.

Figure 4.3: Pair matching
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• In this example, X consists of only one covariate, like age.
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Pair Matching (2)

• Formal definition of ATET and ATENT estimates via pair matching:

∆̂D=1 =
1
n1

∑
i:Di=1

{Yi −
∑
j:Dj=0

I{||Xj − Xi|| = min
l:Dl=0

||Xl − Xi||}Yj} (4.20)

∆̂D=0 =
1
n0

∑
i:Di=0

{
∑
j:Dj=1

I{||Xj − Xi|| = min
l:Dl=1

||Xl − Xi||}Yj − Yi} (4.21)

• ||Xj − Xi|| measures the distance between vectors Xj and Xi.

• By the law of total probability, the ATE can be expressed as:

∆ = Pr(D = 1) ·∆D=1 + Pr(D = 0) ·∆D=0 (4.22)

• The ATE is thus estimated as a weighted average of ATET and
ATENT, using the shares of both groups in the sample as weights:

∆̂ =
n1
n · ∆̂D=1 +

n0
n · ∆̂D=0 (4.23)
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Distance Metrics (1)

How should we define the distance metric ||Xj − Xi||?
• Euclidean distance:

||Xj − Xi||Euclidean =

√√√√ K∑
k=1

(Xjk − Xik)2 (4.24)

• Sum the squared differences across all covariates k and select the
observation j with the smallest overall distance.

• Problem: A specific difference (e.g., of 1) is considered equally
important for each covariate Xk, independent of its distribution.

• Standardized Euclidean distance:

||Xj − Xi||Variance =

√√√√ K∑
k=1

(Xjk − Xik)2

V̂ar(Xk)
(4.25)

• Normalizes any covariate difference between j and i based on the
inverse of the sample variance of the respective covariate. 29
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Distance Metrics (2)

• Mahalanobis distance:

||Xj − Xi||Mahalanobis =

√√√√ K∑
k=1

K∑
l=1

(Xjk − Xik)(Xjl − Xil)
Ĉov(Xk, Xl)

(4.26)

• Incorporates inverse weighting by both the variance and
covariance of the covariates.

• Less weight when Xk strongly correlates with other covariates, as
good matches for them likely imply a decent match for Xk.

• Greater weight when Xk is independent of other covariates to
ensure a satisfactory match quality for Xk.
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1:M Matching (1)

• 1:M (one-to-many) matching: Match the M closest observations
from the other treatment group to reference observation i.

Figure 4.4: 1:M matching
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• In this example, we have one covariate X and M = 2.
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1:M Matching (2)

• The 1:M matching estimator of the ATET corresponds to:

∆̂D=1 =
1
n1

∑
i:Di=1

[Yi − µ̂0(Xi)] (4.27)

• Let J(i) denote the set of M nontreated observations matched to
a treated reference observation i. Then, µ̂0(Xi) corresponds to:

µ̂0(Xi) =
1
M
∑
j∈J(i)

Yj (4.28)

• Equivalent expression for the ATET estimator:

∆̂D=1 =
1
n1

n∑
i=1

[
Di −

Wi
M

]
· Yi (4.29)

• Wi: Number of times a nontreated observation is matched to any
treated observation.
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Radius Matching (1)

• Radius matching defines a maximum admissible dissimilarity in
X between matched treated and nontreated observations.

• Let B be the threshold for the distance metric (e.g., variance or
Mahalanobis distance).

• For any treated reference observation i, estimate µ0(Xi) as the
average of all nontreated observations within B:

µ̂0(Xi) =
∑

j:Dj=0 I{||Xj − Xi|| ≤ B} · Yj∑
j:Dj=0 I{||Xj − Xi|| ≤ B}

(4.30)

• The more similar potential matches are available in the data,
the more comparison observations are actually matched.
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Radius Matching (2)

• In contrast to 1:M matching, radius matching does not fix the
number of matches, but makes this choice data-dependent.

• This may decrease variance (without large costs in terms of bias)
if many similar comparison observations exist.

• A kernel function can also be used to make weights dependent
on the magnitude of the distance metric:

µ̂0(Xi) =

∑
j:Dj=0K

(
||Xj−Xi||

B

)
· Yj

∑
j:Dj=0K

(
||Xj−Xi||

B

) (4.31)
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Asymptotic Properties of Matching Estimators

• Pair matching and 1:M matching estimators are not necessarily√
n-consistent if X contains more than one continuous element

(Abadie and Imbens, 2006).
• Reason: Using a fixed number of matches does not optimally
trade off the bias and variance of the estimator.

• In contrast, kernel matching can attain
√
n-consistency if the

bandwidth h is appropriately adapted to the sample size.
• Even under

√
n-consistency, pair or 1:M matching tends to have

a higher asymptotic variance than the most precise estimators
relying on the same assumptions.

35
4.1 Selection on Observables 4.2 Linear, Series & Kernel Regression 4.3 Covariate Matching 4.4 PS Matching 4.5 IPW, EL & EB 4.6 DR



Variance Estimation for Matching Estimators (1)

• Bootstrapping approaches are inconsistent for pair and 1:M
matching due to the discontinuity of weights (Abadie and
Imbens, 2008).

• Only the selected one or M matches receive positive weight; all
other observations in the sample have zero weight.

• A consistent asymptotic approximation of the estimator’s
variance (for the ATET) is given by:

Var(∆̂D=1) =
1
n1

{
E[(∆Xi −∆D=1)

2|Di = 1]

+ E
[
1
n1

n∑
i=1

[
Di − (1− Di) ·

Wi
M

]2
· σ2(Di, Xi)

]}
(4.32)

• σ2(Di, Xi) = Var(Y|D = Di, X = Xi) is the conditional variance of the
outcome, given the treatment and the covariates.
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Variance Estimation for Matching Estimators (2)

• The variance on the previous slide can be estimated by:

V̂ar(∆̂D=1) =
1
n1

{
1
n1

n∑
i=1

Di · [Yi − µ̂0(Xi)− ∆̂D=1]
2 +

1
n1

n∑
i=1

(1− Di)

·
[
Wi · (Wi − 1)

M2

]
· σ̂2(Di, Xi)

}
(4.33)

• σ̂2(Di, Xi) is estimated via matching within the nontreated group:

σ̂2(Di, Xi) =
M

M+ 1 ·

Yi − 1
M
∑
j∈J (i)

Yj

2

(4.34)

• Ji: Set of M nontreated observations that are closest to some
nontreated reference observation i.

• σ̂2(Di, Xi) is inconsistent (fixed M), but averaging across treated
observations in (4.33) yields a consistent variance estimator. 37

4.1 Selection on Observables 4.2 Linear, Series & Kernel Regression 4.3 Covariate Matching 4.4 PS Matching 4.5 IPW, EL & EB 4.6 DR



Bias Correction (1)

• Pair or 1:M matching can be combined with a regression-based
bias correction to improve the properties of the estimators.

• Bias arises because matched observations j ∈ J(i) typically do
not have exactly the same X values as reference observation i.

• Reconsider the estimator of the ATET:

∆̂D=1 =
1
n1

∑
i:Di=1

[Yi − µ̂0(Xi)] with µ̂0(Xi) =
1
M
∑
j∈J(i)

Yj

• Correct for the bias due to Xj − Xi ̸= 0 by modifying µ̂0(Xi):

µ̂0(Xi) =
1
M
∑
j∈J(i)

[Yj − (µ̃0(Xj)− µ̃0(Xi))] (4.35)

• µ̃0(X): Estimate from regressing Y on X among the nontreated.
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Bias Correction (2)

• Bias correction removes the bias without affecting the
asymptotic variance (Rubin, 1979, Abadie and Imbens, 2011).

• Under specific conditions, it entails a
√
n-consistent and

asymptotically normal ATET estimator.
• This approach may reduce the bias even if the regression model
for Y given X and D = 0 is somewhat misspecified.

• In small samples, the bias correction increases variance of ATET
estimation due to estimating µ̃0(X).

• Kernel or radius matching with nondiscontinuous, smooth kernel
weights are less problematic for bootstrap-based inference.

• Bias correction may still be beneficial in terms of bias reduction
in this case.
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Motivation

• Caveat of methods like covariate matching, kernel, or series
regression that control for X nonparametrically:

Curse of dimensionality:
As the number of covariates in X and possible covariate values
increases, it becomes harder to find good matches in finite samples.

• Alternative approach: Control for the propensity score instead of
directly controlling for X.

Propensity score
The conditional treatment probability given the covariates:
p(X) = Pr(D = 1|X)
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Balancing Property of the Propensity Score

• Conditioning on p(X) balances covariate distribution across
treatment groups⇒ X⊥D|p(X) (Rosenbaum and Rubin, 1983b).

Figure 4.5: A causal graph including the propensity score (denoted by p)

D Y

p

X

• Controlling for p(X) blocks any impact of X on D and thus, X no
longer jointly affects D and Y. 42
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Propensity Score Matching (1)

• The ATE and ATET can also be identified by controlling for the
propensity score p(X) instead of X:

∆ = E[µ1(p(X))− µ0(p(X))],
∆D=1 = E[µ1(p(X))− µ0(p(X))|D = 1] (4.36)

= E[Y|D = 1]− E[µ0(p(X))|D = 1]

• Therefore, we may estimate treatment effects by substituting X
with an estimate of p(X) in matching or regression approaches.

• Propensity score matching is often preferred over covariate
matching:

• Matches only on an estimate of p(X) (a single variable) instead of
high-dimensional X.

• No need for a distance metric because we do not aggregate the
distances in several covariates.
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Propensity Score Matching (2)

• Match to a treated reference observation the nontreated subject
with the most similar estimated propensity score p̂(X).

Figure 4.6: Propensity score matching

0,33

Y
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D = 0
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Propensity Score Estimation (1)

• Nonparametric estimation of p(X) (e.g., by kernel or series
regression) still suffers from the curse of dimensionality.

• To avoid this, p(X) is often estimated using a parametric binary
choice model:

Pr(D = 1|X) = p(X) = Λ(α0 + αX1X1 + · · ·+ αXKXK) (4.37)

• Combines a linear index α0 + αX1X1 + · · ·+ αXKXK and a nonlinear
link function Λ of that index.

• Λ is typically either a normal or logistic distribution function.
• Implies that p(X) is estimated using a probit or logit model and
thus strictly between 0 and 1.

• Propensity score estimation may be inconsistent if:
• Treatment decision cannot be modeled using a linear index of X.
• Unobservables do not follow the assumed distribution (i.e., normal
for probit, logistic for logit models).
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Propensity Score Estimation (2)

• Parametric binary choice models (e.g., probit/logit models) are
conventionally estimated by maximum likelihood estimation:

α̂0, . . . , α̂XK = arg max
α∗
0 ,...,α

∗
XK

n∑
i=1

Di ln(Λ(α∗
0 + · · ·+ α∗

XKXiK))

+ (1− Di) ln(1− Λ(α∗
0 + · · ·+ α∗

XKXiK)) (4.38)

• Intuition: Find coefficient values that maximize the joint likelihood
to obtain the treatment states observed in the sample.

• Propensity score estimate:

p̂(X) = Λ(α̂0 + α̂X1X1 + · · ·+ α̂XKXK) (4.39)
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Variance Estimation for Propensity Score Matching

• Matching on p̂(X) has a different variance than matching directly
on X.

• Variance estimator for propensity score matching must include a
correction term to account for uncertainty from estimating p(X).

• Ignoring the correction term and implicitly assuming that the
propensity score is known leads to biased variance estimates.

• For ATE estimation, ignoring the correction generally
overestimates the true variance (bias is never negative).

• Bootstrapping accounts for uncertainty from estimating p(X) by
re-estimating both p̂(X) and the ATET in each bootstrap sample.
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Inverse Probability Weighting (1)

Inverse probability weighting (IPW) (Horvitz and Thompson, 1952)
Observations with propensity scores that are underrepresented
(overrepresented) in their treatment groups relative to some target
population are given more (less) weight.

• The ATE is identified by:

∆ = E[µ1(X)− µ0(X)] = E
[
E[Y · D|X] · D

p(X) − E[Y · (1− D)|X] · (1− D)
1− p(X)

]

= E
[
Y · D
p(X) −

Y · (1− D)
1− p(X)

]
(4.40)

• The ATET is identified by:

∆D=1 = E
[

Y · D
Pr(D = 1) −

Y · (1− D) · p(X)
(1− p(X)) · Pr(D = 1)

]
(4.41)
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Inverse Probability Weighting (2)

• When estimating treatment effects like the ATE based on sample
analogs of IPW equations, normalization is recommended:

∆̂ =
n∑
i=1

Yi · Di
p̂(Xi)

/ n∑
i=1

Di
p̂(Xi)

−
n∑
i=1

Yi · (1− Di)
1− p̂(Xi)

/ n∑
i=1

1− Di
1− p̂(Xi)

(4.42)

•
∑n

i=1 Di/p̂(Xi) and
∑n

i=1(1− Di)/(1− p̂(Xi)) normalize the weights
such that they add up to 1 within the treatment groups.

• In smaller samples, normalized sample analogs typically entail
better effect estimation, see Busso, DiNardo, and McCrary (2014).

• p̂(Xi) may be estimated parametrically or nonparametrically, e.g.
based on series estimation (Hirano, Imbens, and Ridder, 2003) or
kernel regression (Ichimura and Linton, 2005).
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Inverse Probability Weighting (3)

• Advantages of IPW
• Computationally inexpensive
• No need to choose tuning parameters (e.g., number of matches).
• If the propensity score is nonparametrically estimated, it can
attain the semiparametric efficiency bound (lowest possible
asymptotic variance).

• Disadvantages of IPW
• Estimates may be more sensitive to errors in propensity scores
close to 1 or 0 (higher variance; especially in small samples).

• May be less robust (i.e., more prone to estimation errors) when
using an incorrect model for the propensity score than matching.
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Empirical Likelihood Methods (1)

• After weighting by the inverse of the true p(X), the covariates X
and any of their moments are balanced across treatment groups.

• For the ATET, this implies:

E
[

X̃ · D
Pr(D = 1) −

X̃ · (1− D) · p(X)
(1− p(X)) · Pr(D = 1)

]
= 0

⇔ E
[
X̃ · D− X̃ · (1− D) · p(X)

1− p(X)

]
= 0 (4.43)

• X̃ is a function of X (e.g., X̃ = X for balancing the mean and
X̃ = (X− E[X])2 for balancing the variance across treatment groups).

• Problem: The initial propensity score estimate p̂(Xi) may not
fully balance X̃ in the sample.

• Empirical likelihood (EL) methods aim to modify p̂(Xi) to ensure
that X̃ is as similar as possible across treatment groups.
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Empirical Likelihood Methods (2)

EL methods (Graham, Pinto, and Egel, 2012, Imai and Ratkovic, 2014)
Modify an initial propensity score estimate p̂(Xi) (through changing
the coefficients) until predefined moments of X are maximally
balanced across treatment groups.

• Aim: Enforcing the balance condition on the previous slide to
hold in the sample:

1
n

n∑
i=1

[
X̃i · Di −

X̃i · (1− Di) · p̃(Xi)
1− p̃(Xi)

]
= 0 (4.44)

• p̃(Xi) is an adjusted version of p̂(Xi) that fully balances X̃.

• Avoids manually searching for propensity score specifications
that entail decent balancing.

• p̃(Xi) can be used not only for IPW but also for other estimators
like propensity score matching.
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Entropy Balancing

Entropy balancing (EB) (Hainmueller, 2012)
Iteratively modifies initial (e.g., uniform) default weights until the
predefined balance criterion with regard to X is maximized.

Constraint: Weights must sum to 1 (and be nonnegative) in either
treatment group.

• Both EL and EB aim at perfect covariate balance to make treated
and nontreated observations fully comparable.

• This avoids bias from dissimilarities in X, but may increase the
variance of the estimator.

• In contrast to EL, EB does not require an initial estimate of the
propensity score for computing the final weights.
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Doubly Robust Methods (1)

• We may combine models for conditional mean outcomes
µ1(X), µ0(X) and propensity scores p(X) when evaluating
treatment effects.

• Entails so-called doubly robust (DR) expressions of the ATE (∆)
and ATET (∆D=1), see Robins, Rotnitzky, and Zhao (1994), Robins
and Rotnitzky (1995), and Hahn (1998):

∆ = E [ϕ(X)] ,

with ϕ(X) = µ1(X)− µ0(X) +
(Y− µ1(X)) · D

p(X) − (Y− µ0(X)) · (1− D)
1− p(X) ,

∆D=1 = E
[
(Y− µ0(X)) · D

Pr(D = 1) − (Y− µ0(X)) · (1− D) · p(X)
(1− p(X)) · Pr(D = 1)

]
(4.45)

• ϕ(X) is the efficient influence function.
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Doubly Robust Methods (2)

• DR, IPW, and outcome regression are equivalent for identifying
causal effects, when µ1(X), µ0(X),p(X) are correctly specified.

• This follows from the fact that by the law of iterated
expectations, some terms cancel out:

E
[
(Y− µ1(X)) · D

p(X)
−

(Y− µ0(X)) · (1− D)
1− p(X)

]
= E

[
ε · D
p(X)

−
ε · (1− D)
1− p(X)

]
= 0 and (4.46)

E
[
−µ0(X) · D
Pr(D = 1)

−
−µ0(X) · (1− D) · p(X)
(1− p(X)) · Pr(D = 1)

]
= E

[
µ0(X) ·

(
p(X)

Pr(D = 1)
−

p(X)
Pr(D = 1)

)]
= 0,

• with the error term ε = Y− µD(X) and E[ε|D, X] = 0.
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Doubly Robust Methods (3)

• DR estimators are consistent if either the conditional mean
outcomes or the propensity scores are correctly specified.
⇒ Two chances for correct specification.

• This makes DR estimators more robust than outcome regression
(relies on µ1(X), µ0(X) only) and IPW (relies on p(X) only).

• If both models are correct, DR estimation is semiparametrically
efficient.

• This also holds when µ1(X), µ0(X) and p(X) are estimated
nonparametrically (e.g., by kernel or series regression).

• In small samples, nonparametric DR has lower bias and variance
than nonparametric versions of IPW and outcome regression.

• This better finite sample behavior makes DR estimation
attractive even when IPW and outcome regression are consistent.
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Doubly Robust Methods (4)

• Targeted Maximum Likelihood Estimation (TMLE) is another DR
method (van der Laan and Rubin, 2006).

• Step 1: Obtain initial estimates of µ1(X) and µ0(X) by regression.
• Step 2: Update (robustify) these estimates by regressing them on
a function of the estimated propensity score p(X).

• If outcome regressions are misspecified but p(X) is correct, TMLE
corrects the bias. If outcome regressions are correct but p(X) is
misspecified, TMLE does no harm.

• Another DR approach is weighted outcome regression using IPW
weights based on the propensity score.

• Common principle of DR methods is to combine outcome
regression and propensity score estimation to exploit all
information in the data to control for confounding.
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