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Motivation of Variance Estimation

- Even if unbiasedness and consistency hold, the estimate of the
ATE in a sample typically differs from the true ATE in the
population.

- This is due to the variance of the ATE estimates across samples.

- Knowing the variance and distribution is useful for quantifying
the precision with which the true ATE is estimated in a sample.

- This permits, for instance, answering the following questions
relevant to statistical inference:

- With which error probability can we rule out that the ATE is equal
to zero in the population, given the ATE estimate in our sample?

- What is the range or interval of values that likely includes the ATE
in the population, given the findings in our sample?
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Estimating the Variance of 3

- Directly using Var(8) = H20=EBT js infeasibl it tai
irectly using Var(p) = ~waoy?~ IS infeasible, as it contains
(unobserved) population parameters, such as E[D] and .
- However, we may estimate these parameters in the sample.
- The residual &; is the estimate of the true error term ¢;:
& =Y, — (64 BDy) (335)
N——
Elvilog)
;. Difference between observation i's outcome and the conditional
sample average of the outcome given the treatment (E[Y|D;]).
- Prediction E[Y|D;] is an estimate of E[Y|D = D;] in the population.

- The variance estimator corresponds to:

~ a7 - (D= D)?
ar(p) = 0 (VD)) (3.36)

L has been reglaced by the sample mean D b
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Hypothesis Testing (1)

Hypothesis testing
Assesses whether the true ATE in the population is likely different,

smaller, or larger than a specific value, given 3 and Var(f).

- Reconsider the asymptotically normal distribution of 3:
E[e? - (D — E[D])*]
n - (Var(D))?

- Normalize this to obtain a standard normal distribution:

B =7 N(B,Var(B)),
o B=5 4 N(0,1) (3.37)
sd(B)

with  sd(B) = \/ 2 (D — EID])’] (3.38)
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Hypothesis Testing (2)

- In large enough samples, the z-statistic 2
standard normal distribution.

- This result can be used for checking the plausibility of
hypothesized values of §.

- To test whether a treatment has an effect, use:

Ho:8=0, Hi:8#0 (3.39)

(ﬁ closely follows a

=

- Null hypothesis Ho: The treatment has no effect.
- Alternative hypothesis Hy: The ATE is different to zero.

- If Hy : B =0, the z-statistic simpli f:).

. Sd‘(BB) measures the size of the estimated ATE 3 normalized by
the standard deviation sd(3) as unit of estimation uncertainty.

- Permits assessing how likely it is that the ATE in the population

is different from zero, given the value of 2
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Hypothesis Testing (3)

- If the true ATE in the population is zero, the probability of
observing a value of ’ %:

- The probability ofobtammg d; ;> 1.96 is 2.5%.

- The probability of obtaining d’ﬂ) < —1.96 is also 2.5%.

- Thus, if such an extreme value is observed, Ho : 3 = 0 is rejected
(and H; : B # 0 is accepted) with an error probability below 5%.

- This error probability describes the probability of incorrectly
rejecting Hy (type | error).

- The lower the error probability is, the more confident we are in
rejecting Ho.

- A maximum admissible error probability for rejecting Ho, such as
5%, is conventionally predefined.

7
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Hypothesis Testing (&)

Figure 3.2: Standard normal distribution
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Hypothesis Testing (5)

- The asymptotic standard deviation sd(5) is typically unknown,
as it relies on population parameters, such as E[D] and e.

- Therefore, sd() is replaced with an estimate obtained in the
sample, the standard error se(j):

\/ Z/ i / D 7D) (340)
Var i))?

- Replacing sd(3) with se(3) yields the t-statistic which converges
to a standard normal distribution as the sample size n increases:

B-8
se(3)
- Note that in smaller samples, the t-statistic follows a t-distribution.
- The t-distribution converges to a normal one as n increases.
- For samples with n > 120, a t-distribution is practically
indistinguishable from a normal d|str|but|on 9
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Hypothesis Testing (6)

- Under Hq : 8 = 0, the t-statistic simplifies to: (ﬁ)

- The type | error probability associated with ATE estimate /3 is the
probability of values that are at least as large as the t-statistic.

- This error probability of incorrectly rejecting the null hypothesis
based on the estimate in the sample - i.e, the significance level
implied by using ) ‘ as threshold value - is the p-value:

B—5

<) ) , (3.42)

where A denotes a random variable following a t-distribution.

p-value = Pr <|A| >

p-value

Is the probability of observing a test statistic at least as extreme as
the value (ﬁ) observed in the sample under the satisfaction of
the null hypothesis 8 = 0. 10
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Hypothesis Testing (7)

Comments on hypothesis testing

- Hypothesis testing can only reject the validity of a null
hypothesis, but never confirm it.

- Nonrejection of a null hypothesis means we cannot rule out its
correctness based on the data, not that it is definitively correct.

1
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Procedure for Hypothesis Testing

1. Define the null and alternative hypotheses Ho and H,
- To test the presence of an ATE: Hy : 8 =0, Hy : 8 # 0.
- To test if B differs from another value, e.g, 1: Ho : B=1,Hy: B # 1.
2. Set the significance level
- ais the maximally accepted type | error probability of incorrectly rejecting Ho.
- Typical values: o = 0.05 (5%), 0.01 (1%), or 0.1 (10%).
3. Compute the critical value ¢
- cisthevalue in the standard normal or t-distribution that corresponds to c.

- For & = 0.05, ¢ = 1.96 in a standard normal distribution.

4. Evaluate the t-statistic and statistical significance

- Reject Hg if ‘ i(’éﬁ)‘ > corif the p-value < o otherwise, keep Ho.

- If Hg is rejected, f is statistically significantly different from the 8 hypothesized
under Hyp at the a level of significance.
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One-Sided Hypothesis Testing (

Right-tailed hypothesis test

- Tests whether the ATE estimated in the sample is statistically
significantly larger than zero (or another value of interest):

Ho: <0, Hi:8>0 (3.43)
- The p-value corresponds to:
p-value = Pr [ A > p — (3.44)
se(3)
- The condition for a rejection of the null hypothesis is:
3 -p > ¢ where c is a suitable threshold value for one-sided tests,
SQ(B) — 7 eg,c=1.64fora=0.05

- An equivalent condition is p-value < a.

13
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One-Sided Hypothesis Testing (

Left-tailed hypothesis test

- Tests whether the ATE estimated in the sample is statistically
significantly smaller than zero (or another value of interest):

Ho:8>0, Hi:8<0 (3.45)
- The p-value corresponds to:
p-value =Pr [ A < il (3.46)
se(3)
- The condition for a rejection of the null hypothesis is:
3 -p < where c is a suitable threshold value for one-sided tests,
SQ(B) — 7 eg,c=1.64fora=0.05

- An equivalent condition is p-value < a.
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Confidence Intervals

Confidence interval (Cl)

Provides a range of ATE values such that the true ATE 3 is included
with probability/proportion 1 — a, when constructing Cls in
(infinitely) many samples.

- The confidence interval is constructed as follows:
Cl =B, f], with
B=B—c-se(B), B=pB+c-se(B) (347)

- Band B denote the lower and upper bound of the Cl.
- cis the critical value of a two-sided hypothesis test.

- For e = 0.05 (and thus ¢ = 1.96), the Cl includes the true 5 with
95% probability.

- Whenever 3 is not statistically significantly different from zero,
the corresponding Cl includes the zero. -
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Introduction to Bootstrapping

Bootstrapping (Efron, 1979)
Repeatedly draw samples of n observations from the original data
(with replacement) to compute p-values, confidence intervals etc.

- Bootstrapping is an alternative method for computing standard
errors that does not rely on the asymptotic formula (3.40).

- Drawing observations with replacement implies that some
subjects may appear several times or not at all.

- For this reason, bootstrap samples differ from the original data
and one another; however, they match the data on average.

- This mimics the fact that the original data is a random sample
from the population and a new sample may differ from it.

- Therefore, this quite cleverly approximates the approach of
randomly drawing many samples from the population.

16
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Bootstrapping Procedure

Figure 3.3: Bootstrapping

Original
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- Generate bootstrap samples, reestimate the ATE in each of them
and then use these estimates to calculate the standard error.

17
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Bootstrap-Based Standard Error

- The standard error is computed as the standard deviation of the
ATE estimates across all bootstrap samples:

B B 2
se(B) = ﬁ > <Bb - % Zéb> (348)

- B is the number of bootstrap samples (B should ideally be large,
preferably B > 999).

- bis the index of a specific bootstrap sample with b € {1,2,...,B}.

- B is the ATE estimate in the bootstrap sample b.

- The bootstrap-based standard error can then be used in the
t-statistic (equation (3.41)) to proceed with statistical inference.

18
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Bootstrap-Based p-Value

- An alternative bootstrap approach is to directly compute the
p-value without using the t-statistic.

- For a two-sided hypothesis test, the p-value can be calculated
by counting how often |3 — j| is larger than |3]:

p-valu ZI{Iﬁb Bl > 181} (3.49)

1{|B° — B > |B|} is an mdmator function that is equal to 1
whenever |3° — 3| > || holds and zero otherwise.

- The distribution of 3% — 3 has a mean of zero, which mimics the
distribution under the null hypothesis of no effect.

- If B appears rather extreme compared to this distribution, the
null hypothesis is rejected.

19
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Goodness of Fit and R? (1)

- Goodness of Fit: Assessing the relative importance of the
treatment in explaining the outcome compared to other
characteristics.

- The outcome Y; can be decomposed into two components:
Y, = E[Y;|D]] + & (3.50)

- Prediction E[Y;|D;]: The part of the outcome explained by the
treatment.

- Residual &;: The part of the outcome explained by other (possibly
unobserved) characteristics.

- The variance of Y; is the sum of the variances of these
components:

var(Y;) = Var(E[Y;|Di]) + Var(&)) (3.59)
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Goodness of Fit and R? (2)

- The variances of the parts of the outcome explained by the
treatment and the residuals sum to 1

_ Var(Evi|py]) | var(é)
-~ var(Y) var(Y;) (3.52)
N———
RZ

- The goodness of fit (R?) can be judged by the share in the
variation of Y; caused by the treatment.
- Interpretation:
- R? close to 1: Treatment causes most of the variation in Y;.
R? close to 0: Other characteristics cause most of the variation in Y;.
- R? is different from the magnitude of the ATE:
- Atreatment may have a large ATE but still explain only little of the
variation in the outcome relative to other characteristics.

Al
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Discrete Treatments (1)

- So far, the discussion has focused on binary treatments (0 or 1).

- In many empirical applications, however, the interest lies in the
effects of several, potentially competing treatments.

- First, consider treatments that are discrete, i.e.,, can take only a
limited number of different values.

- Formally, a treatment can take values D € {0,1,2,...,J}, where J
denotes the number of treatments.

- Covers both ordered (e.g., 1 week vs. 2 weeks of training) and
unordered treatments (e.g., IT course vs. sales training).

- If nontreatment and all the various treatments 1,...,J are
randomized, the independence assumption extends to:

{¥(0),Y(1), Y(2),...,Y(J)} LD (3.53)

23
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Discrete Treatments (2)

- To analyze the ATEs for each nonzero treatment, create binary
variables: Dy ={D =1}, D, =I{D =2}, ..., D,={D =}.
- The regression model in the population is:

E[Y|D] = o + 61 D1 + 62 D2
E[Y|D=0]  E[y|D=1]—E[Y|D=0] E[Y|D=2]—E[Y|D=0]

~—
E[Y|D=/]—E[Y|D=0]

© B, B, ..., [ correspond to the ATEs of the various treatments vs.
no treatment, i.e, E[Y(1) — Y(0)], E[Y(2) — Y(0)], . .., E[Y()) — Y(0)].
- This model makes pairwise comparisons of the average
outcomes between any treatment group and the control group.
- Note that no linear relationship between Y and D is imposed.

24
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Continuous Treatments (1)

- Now consider a treatment D that is continuously distributed, i.e.,
may take infinitely many values that respect cardinality.
- The independence assumption is adapted to:

Y(d)LD for any value d that treatment D might take. (3.55)

- Approach one: Discretize the continuous treatment
- Generate binary indicators for specific brackets of values (e.g.,
= I{D <1000}, D, = I{1000 < D < 2000},..) and use (3.54).
. Perm|ts analyzing the ATEs of the various brackets but not the
average effect of a marginal increase in D on Y.

- Approach two: Directly include D in the linear regression

Y=a+8D+¢ (3.56)

- Under the independence assumption, 3 represents the average

effect ofa margmal mcrease in Dony. . .
nce Esf 3.5 Multiple or Continuous Treatments Including Covar
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Continuous Treatments (2)

- Denote the conditional mean of Y given a specific value d of
treatment D as pg = E[Y|D = d].

- By the independence assumption, ug = E[Y(d)], ruling out
treatment selection bias across values of d.

* Vg = a“d indicates how much E[Y(d)] changes in reaction to a
marginal change in treatment D at treatment value d.

- If Yis a linear function of D, B corresponds to the average
marginal effect:

E[Vio] = 8 (3.57)

- Under certain conditions (namely if D is normally distributed),
E[Vup] = B holds even if Y is not a linear function of D (i.e, the
marginal effect Vg may differ across treatment values of d).

26
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Continuous Treatments (3)

- In general, the marginal effect V4 differs from the average
marginal effect E[V up].

- Exception: When the marginal effect is homogeneous, so that:

OE[Y(d")]  OE[Y(d)
ad ~ ad

] for any values d’ # d that D might take. (3.58)

- Therefore, under homogeneous effects, the conditional mean
outcome E[Y|D] is truly linear in D.

- Only in this case does linear regression permit identifying the
marginal effect at d, since OE[Y( I aE[Yd J — = B forany dandd'.

27
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Continuous Treatments (4)

Figure 3.4: Linear association of the outcome and treatment

28
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Continuous Treatments (5)

- In many empirical settings, the causal relation of the outcome Y
and a continuous treatment D might be nonlinear.

- This implies that marginal effects are heterogeneous; they differ
depending on the values of the treatment.

- To allow for nonlinearities, the regression model can be made
more flexible by including higher-order terms of D, e.g., D%

EYIDl = o +pBD+ B.D? (3.59)
E[Y|D=0]
- Taking the first derivative of E[Y(d)] with respect to d yields:
OE[Y(d
7[8(5 I B+ 26,d (3.60)

- Thus, the marginal effect coming from the nonlinear model now
depends on the treatment value d.

29
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Continuous Treatments (6)

Figure 3.5: Nonlinear association of the outcome and treatment

Here, the outcome-treatment relation is even nonmonotonic. s
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Continuous Treatments (7)

- Including additional higher-order terms (e.g., D3, D*, etc.) further
increases the model's flexibility to incorporate nonlinearities.

- However, too many higher-order terms increase the variance of
effect estimation, particularly in small samples.

- Ideally, the optimal number of higher-order terms is chosen in a
way that minimizes the overall estimation error (MSE).

- This can be done in a data-driven way, e.g.,, based on
cross-validation (Stone, 1974).

- For continuous treatments, nonparametric methods (e.g., series
or kernel regression) offer a flexible alternative to linear
regression.

- Increased flexibility comes at the cost of a higher variance.

- In large samples, the gain in flexibility from nonparametric
approaches often outweighs this increase in variance.

3

3.4 Variance Estimation, Inference, and Goodness 3.5 Multiple or Continuous Treatments 3.6 Including Covar
00000000000000000000 000000000e 00000000



Table of Contents

3.6 Including Covariates

32

ation, Inferenc s00dness 5 Mult Continu itm 3.6 Including Covariates
o ) ©0000000




Why Control for Covariates?

- Under the independence assumption {Y(1), Y(0)}.LD, treated and
control groups are comparable in background characteristics.

- Therefore, observed characteristics are not needed to obtain an
unbiased and consistent ATE estimate.

- Nevertheless, controlling for such covariates X = (X4, X5, ..., Xk)
can reduce the variance of treatment effect evaluation.

- Since covariates are measured prior to treatment, we assume
X(1) = X(0) = X, ruling out any influence of D on X.

33
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Graphical Illustration

Figure 3.8: Pretreatment covariates

- Pretreatment covariates X may influence Y, but (due to random
treatment assignment) neither influence, nor are influenced by

D.
- X may influence/be influenced by unobserved characteristics U

that affect Y (but not D due to treatment randomization).
34
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Regression Model with Covariates

- To control for covariates, we now include X = (Xi,...,Xx) on the
right-hand side of the regression:

Y=a+ BpD+ Bx,X1+ -+ B Xk + € (3.61)

- This models the conditional mean outcome given the treatment
and the covariates as:

E[VID,X] = a + BpD + B, X1 + - - 4 B Xk (3.62)
- The definition of the outcome in the sample is provided by:

Yi = &+ BoD; + BuXin + - - + B Xix +Ei (3.63)

Elv;10;,xi]

- Some of the variation in Y is now captured by X; therefore, the
residuals &; tend to decrease in absolute magnitude.

35
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Covariates and the Goodness of Fit

- Including covariates yields the following definition of R?:

_ Var(E[vi|Di, Xi)

var(Y;) 864)

R2
- Whenever X partly explains Y, the variation in Y explained by D
and X—and thus R?—is larger than when D is the only regressor.

- The estimated variance of BD is reduced, leading to a smaller
standard error and (if Bp # 0) a higher t-statistic/lower p-value.

- As a result, estimation uncertainty goes down, and statistical
power to detect nonzero ATEs in the population goes up.
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Misspecification of the X-Y Relationship

- Even if the influence of X on Y is not linear, 3, remains a
consistent estimate of the ATE.

- This result comes from the fact that D is not associated with X
due to randomization: DLX.

- Thus, the error of incorrectly assuming a linear association
between Y and X does not spill over to the evaluation of the ATE.

- By remains asymptotically unbiased in this case.

- In small samples, misspecification may cause bias, but this bias
vanishes as sample size increases.

- This would not hold if D were not fully randomized, but rather
associated with X.

7
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Bad Controls

- Consider the case where X is affected by D, such that X(1) # X(0).
- In this case, controlling for X does not allow for assessing the
causal effect of D for two reasons:
(1) Part of the causal effect of D on Y may operate via X = controlling
for X conditions part of the effect away.
(2) If both D and U (which also affects Y) have a causal effect on X,
controlling for X introduces a statistical association between D and
U that would not exist otherwise. = collider bias

W

Figure 3.9: Posttreatment covariates that are bad controls.
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Example: Birth Weight as a Bad Control

Example

Consider the effect of mothers’ smoking during pregnancy (D) on
children’s postnatal health (Y) using birth weight (X) as a control.

(1) Birth weight may already reflect part of the negative effects of
smoking on a child’s health.
- Controlling for X (e.g., comparing only low-birth-weight children)
conditions away part of the effect of smoking on postnatal health.
(2) Collider bias: Low-birth-weight children of smoking (D = 1) and
nonsmoking mothers (D = 0) are not comparable.
- Low birth weight in newborns of nonsmoking mothers is caused by
other characteristics (U), such as birth defects, which also affect Y.
- Thus, the effect of smoking is mixed with that of birth defects.

= May lead to paradoxical findings, such as smoking appearing to
reduce mortality among newborns with a low birth weight. .
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