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Causal Analysis with One Treated Unit

Synthetic control method (Abadie and Gardeazabal, 2003; Abadie,
Diamond, and Hainmueller, 2011):

• Requires that the outcome is observed in both pretreatment and
posttreatment periods.

• Requires panel data, such that the same subjects can be
followed over time.

• Originally developed for case study settings to evaluate the
treatment effect on a single treated unit when constructing a
nontreated comparison observation based on a pool of multiple
nontreated units.
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Synthetic Control Method - Example

Example

• Synthetic control study by Abadie and Gardeazabal (2003) on the
impact of terrorist conflict on Basque Country’s GDP per capita.

• Treated unit is the Basque Country while synthetic control is
created from other Spanish regions.

Graphical illustration (Figure 1):

• Treatment starts in 1968, marked by ETA’s first victim.
• Solid line: Basque Country’s GDP per capita.
• Dashed line: Synthetic control’s GDP per capita.
• Post-1968: Divergence in GDP per capita, indicating a negative
treatment effect.
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Graphical Illustration
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Figure 1: Synthetic control method applied to evaluate terrorist activities in
the Basque Country.
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Notation

• Panel data of n units, indexed by i ∈ {1, . . . ,n}.
• Observed over T time periods, indexed by t ∈ {1, . . . , T }.
• Yit: Observed outcome of unit i in period t.
• Only the last unit i = n is treated in period T0 + 1, where T0
denotes the last period prior to treatment such that T0 ≥ 1.
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Treatment Effect Estimation

• Treatment effect estimate for treated unit i = n for any
posttreatment period t ≥ T0 + 1 is the difference between the
treated outcome and a weighted average of nontreated
outcomes in that period. Formally:

∆̂n,T=t = Ynt −
n−1∑
i=1

ω̂iYit, for any t ≥ T0 + 1, (8.1)

where ω̂i is a specific weight (importance) of a nontreated unit.
• Weights are chosen such that the weighted average of
pretreatment outcomes of nontreated units matches the
development of the pretreatment outcome of the treated unit,
up to period T0. Formally, choose weights such that:

n−1∑
i=1

ω̂iYit ≈ Ynt, for all t = 1, . . . , T0. (8.2)
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Identification Assumptions

• Controlling for pretreatment outcomes is sufficient to control for
confounders that entail diverging potential outcomes under
nontreatment of the treated and nontreated units in the
posttreatment periods (related to selection on observables).

• Further assumptions: no anticipation assumption and the
convex hull condition (a common support assumption).

• Convex hull condition requires that the pretreatment outcomes
of the treated unit are not too extreme compared to the
nontreated units (not much higher or lower than the highest or
lowest outcome of nontreated units in any pretreatment period).
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Calculation of Weights

• Weights ω̂i are either positive or zero: ω̂i ≥ 0.
• Weights sum up to 1:

∑n−1
i=1 ω̂i = 1.

• Computed using least squares approach:

ω̂ = argmin
ω∗

T0∑
t=1

(Ynt − ω∗
1 Y1t − . . .− ω∗

n−1Yn−1t)2,

subject to ω∗
i ≥ 0,

n−1∑
i=1

ω∗
i = 1. (8.3)

• Allowing for period-dependent weights νt ≥ 0 in addition:

ω̂ = argmin
ω∗

T0∑
t=1

νt(Ynt − ω∗
1 Y1t − . . .− ω∗

n−1Yn−1t)2,

subject to ω∗
i ≥ 0,

n−1∑
i=1

ω∗
i = 1. (8.4)

9
8.1 Estimation and Inference with a Single Treated Unit 8.2 Alternative Estimators and Multiple Treated Units



Transformed Outcomes

• One may transform outcomes prior to running the synthetic
control method.

• Taking logarithms yields a causal effect which can be interpreted
in terms of percentage change.

• Demeaned outcomes Ỹit:

Ỹit = Yit −
1
T0

T0∑
t=1

Yit (8.5)

• Considering Ỹit instead of Yit implies that the weighting aims for
a combination of nontreated units with pretreatment outcome
trends similar to the treated unit, instead of similar levels.

• Hence, we may implement the synthetic control method also
based on common-trend-type assumptions.
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Synthetic Control Method with Covariates

Including covariates may make the selection-on-observables-type
(or common trend in the case of demeaned outcomes) assumption
more plausible.

Multiple ways to include them:

• Include covariates in the optimization problem (8.3) similar to
pretreatment outcomes.

• Regress outcomes on covariates, and then use outcome
residuals in the optimization problem (8.3), as suggested by
Doudchenko and Imbens (2016).
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Inference for the Synthetic Control Method (1)

Determining statistical significance of treatment effects is
challenging due to having only a single treated unit.

Randomized inference based on permutation, see Abadie, Diamond,
and Hainmueller, (2010):

• Iteratively consider one nontreated unit as treated and the other
nontreated units as nontreated to estimate a placebo effect.

• Distribution of placebo effects allows evaluating how extreme
the actual treatment effect is relative to placebo effects.

• Approximate p-value as the share of placebo effects which are
more extreme than the treatment effect.
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Inference for the Synthetic Control Method (2)

Further inference approaches:

• Conformal inference, see Chernozhukov, Wüthrich, and Zhu
(2021).

• Based on reassigning pretreatment placebo effects on the
treated unit to posttreatment periods and vice versa, in order to
compute test statistics based on these permutations.

• Asymptotic variance approximation, see Li (2020).
• Suitable for inference on mean effects across all posttreatment
periods, if they are sufficiently numerous.
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Synthetic Control Method and Ordinary Least Squares

• Synthetic control method is related to ordinary least squares
(OLS) regression.

• OLS solves the following minimization problem:

(ω̂, α̂) = arg min
ω∗,α∗

T0∑
t=1

(Ynt − α∗ − ω∗
1 Y1t − . . .− ω∗

n−1Yn−1t)2. (8.6)

• Imposing ω∗
i ≥ 0,

∑n−1
i=1 ω∗

i = 1, and α∗ = 0 yields the synthetic
control approach in equation (8.3).

• Allowing for a non-zero constant α∗ while keeping the
conditions on the weights, yields the DiD-related synthetic
control approach.

• Dropping the conditions on the weights permits the weights in
equation (8.6) to be negative, and thus the method might
extrapolate and make predictions beyond the convex hull.
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Machine Learning Extensions

Lasso regression:

• Add a penalty term λ
∑n−1

i=1 |ω∗
i | to equation (8.6).

• Apply cross-validation by repeatedly estimating placebo
treatment effects with different penalty terms.

• Select the penalty term that minimizes the mean squared
placebo treatment effects (Doudchenko and Imbens, 2016).

Constrained lasso:

• Add constraint on weights
∑n−1

i=1 |ω∗
i | ≤ 1 (Raskutti, Wainwright,

and Yu, 2011), which does not rely on cross-validation.

Combination of multiple approaches (Abadie and L’Hour, 2018):

• Apply cross-validation to determine the weight given to each
method, which perform better than using a single approach.
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Synthetic Control with Multiple Treated Units (1)

• Synthetic control method can be extended to allow for multiple
treated units instead of a single treated unit.

• Permits estimating the ATET in a specific outcome period:
∆D=1,T=t = E[Yt(1)− Yt(0)|D = 1].

• One approach is to apply the estimator separately to each of the
treated units, and then average over the effects to estimate the
ATET:

∆̂D=1,T=t =
1∑n
i=1 Di

∑
i:Di=1

∆̂i,T=t. (8.7)

with ∆̂i,T=t being the effect estimate of the treated unit i in
outcome period t.

• For each of the treated unit i, weights are chosen such that
equation (8.2) holds.

• Estimate of each treated unit, ∆̂i,T=t, is based on equation (8.1).
17
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Synthetic Control with Multiple Treated Units (2)

• Alternative: compute the weights such that equation (8.2) holds
on average for treated units (rather than for each treated unit).

• Denote by n1 =
∑n

i=1 Dithe number of treated units and assume
that the n− n1 nontreated units appear at the top of the data.

• Modify equation (8.2) as follows:
n−n1∑
i=1

ω̂iYit + α̂ ≈ 1
n1

n∑
j=n−n1+1

Yjt, for all t = 0, . . . , T0, (8.8)

DiD-type synthetic control approach if α̂ can be non-zero.
• Equation (8.3) becomes:

(ω̂, α̂) = arg min
ω∗,α∗

T0∑
t=1

 1
n1

n∑
j=n−n1+1

Yjt − α∗ − ω∗
1 Y1t − . . .− ω∗

n−n1Yn−n1t

2

,

subject to ω∗
i ≥ 0,

n−1∑
i=1

ω∗
i = 1. (8.9)
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Synthetic Control with Multiple Treated Units (3)

• Arkhangelsky et al. (2019) provide a synthetic DiD approach
related to equation (8.9), which in addition incorporates
reweighting periods (see equation (8.4)) in a data-driven way.

• As synthetic control/DiD methods can also be applied to
multiple treatments, they provide an alternative estimation
strategy to the methods in chapters 4 and 7 under the
selection-on-observables and common trend assumptions.

• Also under multiple treated units, synthetic control/DiD
methods can be combined with other (e.g., regression) methods,
with the weights of each method determined by cross-validation.

• Methods can be adapted to staggered treatment introduction,
see Ben-Michael, Feller, and Rothstein (2021b).
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