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Intuition of Experiments

• Subjects are randomized into treatment and control groups (e.g.,
by coin flip), see e.g. Fisher (1935).

• This ensures that background characteristics U are comparable
across the two groups (at least in large samples).

• Therefore, the causal effect of the treatment D can be assessed
by comparing the outcomes Y of both groups.

• Graphical illustration:
D Y

U

Figure 2.3: No treatment selection bias
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Independence Assumption in Experiments

• Potential outcomes Y(1), Y(0) are statistically independent of the
treatment D:

{Y(1), Y(0)}⊥D, (3.1)

where ⊥ denotes statistical independence.
• As a consequence, means of the potential outcomes are
comparable across treatment and control groups. Therefore,

E[Y|D = 1] = E[Y(1)|D = 1] = E[Y(1)],
E[Y|D = 0] = E[Y(0)|D = 0] = E[Y(0)]

• The ATE corresponds to the mean difference in the outcomes of
treated and nontreated observations (no selection bias):

∆ = E[Y(1)]− E[Y(0)] = E[Y|D = 1]− E[Y|D = 0] (3.2)
4
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Sample Version

• The average outcomes E[Y|D = 1] and E[Y|D = 0], and the ATE on
the previous slide, refer to the total population.

• However, experiments are typically conducted in a sample drawn
randomly from the population of interest for representativeness.

• The ATE in the sample can be estimated by:∑n
i=1 Yi · Di∑n
i=1 Di

−
∑n

i=1 Yi · (1− Di)∑n
i=1(1− Di)

(3.3)

• n is the sample size, and i ∈ {1, 2, . . . ,n} is the index of a specific
observation in the sample.

• The first term refers to the mean outcome among the treated in
the sample.

• The second term refers to the mean outcome among the
nontreated in the sample.
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Representation of Causal Effects by Linear Regression

• ATE evaluation under a randomized treatment can also be
expressed as a linear regression problem (Gauss, 1809).

• Conditional mean of outcome Y given treatment D:

E[Y|D] = E[Y(0) + (Y(1)− Y(0)) · D|D] (3.4)
= E[Y(0)|D] + {E[Y(1)|D]− E[Y(0)|D]} · D

• Under the independence assumption (3.1):

E[Y|D] = E[Y|D = 0]︸ ︷︷ ︸
α

+(E[Y|D = 1]− E[Y|D = 0]︸ ︷︷ ︸
β

) · D

• β equals the ATE, ∆ = E[Y(1)− Y(0)].
• α equals the mean potential outcome under nontreatment, E[Y(0)].
• α+ β equals the mean potential outcome under treatment, E[Y(1)].
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Error Term

Error term ε

Difference between the observed outcome Y and its respective
conditional mean in a specific treatment group, E[Y|D]

ε = Y− (α+ βD)︸ ︷︷ ︸
E[Y|D]

(3.5)

• Rearranging terms shows that Y can be expressed as:

Y = α+ βD︸ ︷︷ ︸
E[Y|D]

+ ε (3.6)

• E[Y|D]: Average outcome in a specific treatment state.
• ε: Deviation of Y from the average outcome.

8
3.1 Social Experiments 3.2 Effect Identification by Linear Regression 3.3 Estimation by Linear Regression



Graphical Illustration

Figure 3.1: Linear regression
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Moment Conditions (1)

• To compute coefficients α and β, linear regression is based on
exploiting two specific properties of error term ε.

• These properties are known as moment conditions, as they refer
to the first moments (means) of the distribution of a variable.

First moment condition
Deviations from a variable’s mean must average to zero.

E[ε] = E[Y]− E[E[Y|D]] = E[Y]− E[Y] = 0 (3.7)

• The second equality in (3.7) follows from the law of iterated
expectations.

Law of iterated expectations
The mean of a variable corresponds to the mean of the conditional
means of that variable.
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Moment Conditions (2)

• Derivation of the second moment condition:

ε = Y− E[Y|D]
= Y− E[Y(0)]− {E[Y(1)|D]− E[Y(0)|D]} · D
= Y− E[Y(1)] · D− E[Y(0)] · (1− D)
= (Y(1)− E[Y(1)]) · D+ (Y(0)− E[Y(0)]) · (1− D) (3.8)

• Independence assumption (3.1) permits replacing E[Y|D] in the first
line with functions of mean potential outcomes.

• The last equality follows from the definition of the observed
outcome, Y = Y(1) · D+ Y(0) · (1− D).

• Since E[Y(1)− E[Y(1)]] = 0 and E[Y(0)− E[Y(0)]] = 0:

E[ε|D] = 0
11
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Moment Conditions (3)

Second moment condition

E[D · ε] = 0 (3.9)
Follows from the law of iterated expectations: E[D · ε] = E[D · E[ε|D]].

• It can be shown that:

E[D · ε] = E[(D− E[D]) · ε] = Cov(ε,D)

where Cov denotes covariance.

• Independence assumption (3.1) implies that the covariance of
the treatment and the error term in the population is zero:

Cov(ε,D) = 0
12
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ATE Identification (1)

• Solve the first and second moment conditions for α and β.
• The first moment condition implies:

E[ε] = E[Y− α− βD] = 0
⇔ α = E[Y]− βE[D] (3.10)

• The second moment condition implies:

E[D · ε] = E[D · (Y− α− βD)] = 0
= E[D · (Y− E[Y]− β(D− E[D]))] = 0

⇔ β =
E[D · (Y− E[Y])]
E[D · (D− E[D])] =

E[(D− E[D]) · (Y− E[Y])]
E[(D− E[D]) · (D− E[D])]

=
Cov(D, Y)
Var(D) (3.11)

• The second equality follows from the definition of α above.
13
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ATE Identification (2)

• Linear regression identifies the ATE of a binary treatment in
experiments as:

β =
Cov(D, Y)
Var(D)

• This covariance-variance-ratio thus corresponds to
E[Y|D = 1]− E[Y|D = 0]

• Plugging β into equation (3.10) identifies:

α = E[Y|D = 0] = E[Y(0)]

(i.e., the mean potential outcome under nontreatment)
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Alternative Approach for ATE Identification

• Express linear regression as the following optimization problem
to identify the coefficients α and β:

α, β = arg min
α∗,β∗

E[Y− α∗ − β∗D︸ ︷︷ ︸
ε

]2 (3.12)

• α∗ and β∗ represent a range of candidate values for α and β.
• Select the values that minimize the expectation of the squared
error terms.

• First-order conditions with respect to α∗ and β∗:

E[ε] = 0 and E[D · ε] = 0

• Correspond to the moment conditions on the previous slides.
• Choose α∗ and β∗ such that these derivatives are zero.

• Note that even though we have considered linear regression, no
linear relationship is imposed when the treatment is binary.
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Estimating the ATE in a Sample

• Estimation of the ATE based on linear regression in the sample:

α̂, β̂ = arg min
α∗,β∗

n∑
i=1

(Yi − α∗ − β∗Di)2 (3.13)

• α̂, β̂: Sample estimates of the population parameters α, β.
• α∗, β∗: Candidate values chosen such that the sum of squared
residuals is minimized.

• Residuals: Deviations between observed outcomes and the
estimated regression line.

• Minimizing the mean squared residuals (instead of the sum)
yields the same result, as the mean is the sum divided by n:

α̂, β̂ = arg min
α∗,β∗

1
n

n∑
i=1

(Yi − α∗ − β∗Di)2

• Linear regression is also known as ordinary least squares (OLS).
17
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Sample-Based Estimates β and α

• Estimate β̂ in the minimization problem on the previous slide:

β̂ =
Ĉov(Yi,Di)
V̂ar(Di)

, where (3.14)

Ĉov(Yi,Di) =
1

n− 1

n∑
i=1

(
Yi − Ȳ

) (
Di − D̄

)
and

V̂ar(Di) =
1

n− 1

n∑
i=1

(
Di − D̄

)2
.

• β̂ corresponds to the mean difference in outcomes between
treated and nontreated groups in the sample.

• Estimate α̂ in the minimization problem on the previous slide:

α̂ = Ȳ− β̂D̄ (3.15)

• D̄ = 1
n
∑n

i=1 Di and Ȳ = 1
n
∑n

i=1 Yi denote the sample averages of
the treatment and the outcome. 18
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Desirable Properties of Estimators (1)

• β̂ and α̂ may differ from their true values in a given sample, as
the sample may not be fully representative of the population.

• In this case, the independence assumption (3.1) might not hold
exactly in the sample.

Three properties are desirable for sample-based estimates:

Unbiasedness
The estimates hit their true values on average when applied to
infinitely many randomly drawn samples.

E[β̂] = β, E[α̂] = α (3.16)

• The expectations of estimates β̂ and α̂ correspond to the true
parameters β and α.
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Desirable Properties of Estimators (2)

Consistency
As the sample size increases, β̂ is more and more likely to be close
to the true β.

Pr(|β̂ − β| > ϵ) → 0 for any ϵ > 0 when n→ ∞ (3.17)

• The probability of obtaining an estimate β̂ that is different to the
true effect β by more than ϵ goes down in a larger sample.

• When the sample size goes to infinity, β̂ collapses to β.

Equivalent statement: β is the probability limit of β̂:

plim(β̂) = β (3.18)
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Desirable Properties of Estimators (3)

Asymptotic normality
The pooled estimates β̂ and α̂ obtained from many randomly
drawn, sufficiently large samples follow a normal distribution.

• Enables approximating the distribution of an estimate across
many samples, even with only a single sample at hand.

• Useful for statistical inference (e.g., confidence intervals and
hypothesis testing).

• The OLS-based estimates β̂ and α̂ of the ATE and the mean
potential outcomes satisfy all three desired properties.

• Other estimators may also satisfy some or all of these
properties under particular identifying assumptions.
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Unbiasedness of β̂ (1)

To show the unbiasedness of β̂, replace Yi in Ĉov(Yi,Di)
V̂ar(Di)

with Yi = α+ βDi + ε.

β̂ =
Ĉov(α+ βDi + εi,Di)

V̂ar(Di)

= β
V̂ar(Di)
V̂ar(Di)

+
Ĉov(εi,Di)
V̂ar(Di)

= β +
Ĉov(εi,Di)
V̂ar(Di)

= β +

1
n−1

∑n
i=1

(
εi − 1

n
∑n

i=1 εi
)
(Di − D̄)

1
n−1

∑n
i=1(Di − D̄)2

= β +

∑n
i=1 εi · (Di − D̄)∑n
i=1(Di − D̄)2

(3.19)

• Line 2: α has a covariance of zero (as α is
a constant). The covariance of Di with
itself equals its variance.

• Line 3: β̂ corresponds to β plus the
sample covariance of Di and εi divided by
the sample variance of Di .

• Line 4: Provides the formulas for the
covariance and variance terms.

• Line 5: Follows from the fact that
1

n−1
∑n

i=1(εi −
1
n
∑n

i=1 εi)(Di − D̄) =
1

n−1
∑n

i=1 εi · (Di − D̄).
1

n−1 cancels out in the numerator and
denominator.
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Unbiasedness of β̂ (2)

• Taking expectations of the terms in equation (3.19) yields:

E[β̂] = β + E
[∑n

i=1 εi · (Di − D̄)
(Di − D̄)2

]

= β + E


∑n

i=1

=0︷ ︸︸ ︷
E[εi|Di] ·(Di − D̄)
(Di − D̄)2


= β (3.20)

• The second line follows from the law of iterated expectations.
• Unbiasedness holds because the errors have an expectation of
zero in either treatment group: E[εi|Di] = 0.
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Unbiasedness of α̂

• To show the unbiasedness of α̂, take expectations in α̂ = Ȳ− β̂D̄:

E[α̂] = E
[
1
n

n∑
i=1

Yi − β̂
1
n

n∑
i=1

Di

]

=
1
n

n∑
i=1

E[Yi]−
1
n

n∑
i=1

E[β̂Di]

=
n
nE[Y]− β

n
nE[D] = E[Y]− βE[D] = α (3.21)

• The third line follows from the fact that:
• E[β̂] = β, which has been shown on the previous slide.
• The sum of n identical averages is n times the average:∑n

i=1 E[Yi] = n · E[Y] and
∑n

i=1 E[Di] = n · E[D].
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Consistency of β̂

• Use the plim operator to verify to which expressions the
parameters converge as the sample size goes to infinity.

• To show the consistency of β̂, consider the probability limits of
the third line of equation (3.19):

plim(β̂) = plim(β) + plim
(
Ĉov(εi,Di)
V̂ar(Di)

)

= β +
Cov(ε,D)
Var(D) = β (3.22)

• Since β is a constant (the ATE in the population), its probability
limit is β itself.

• Sample covariances and variances converge to the covariances
and variances in the population by the weak law of large numbers.

• The last equality follows from Cov(ε,D) = 0 (see slide 12).
25
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Consistency of α̂

• To show the consistency of α̂, consider the probability limits of
α̂ = Ȳ− β̂D̄:

plim(α̂) = plim
(
1
n

n∑
i=1

Yi − β̂

n∑
i=1

Di

)
= E[Y]− βE[D] = α (3.23)

• The last equality follows from the definition of α in equation
(3.10).
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Asymptotic Normality of β̂ (1)

• To show the asymptotic normality of β̂, reconsider the fifth line
of equation (3.19) and bring β to the left side:

β̂ − β =

∑n
i=1 εi · (Di − D̄)∑n
i=1(Di − D̄)2

=
1
n
∑n

i=1 εi · (Di − D̄)
1
n
∑n

i=1(Di − D̄)2

⇔
√
n(β̂ − β) =

1√
n
∑n

i=1 εi · (Di − D̄)
1
n
∑n

i=1(Di − D̄)2
(3.24)

• Line 2: Expand the right expression with 1
n .

• Line 3: Multiply both sides by
√
n. Note that

√
n
n =

√
n√

n
√
n = 1√

n .

• Based on this expression, asymptotic normality can be shown by
the central limit theorem (De Moivre, 1738, Lyapunov, 1901,
Lindeberg, 1922, Lévy, 1937).
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Central Limit Theorem

Central limit theorem
For any randomly sampled variable, W, that has a mean of zero
(E[W] = 0) and a bounded variance, it holds that:

n∑
i=1

Wi →d N(0,n · Var(Wi)),

⇔ 1√
n

n∑
i=1

Wi →d N(0, Var(Wi)) (3.25)

As n increases, the sum of W converges to a normal distribution
with a zero mean and a variance given by n times the variance of W.

• The second line follows by multiplying by 1√
n .

• Note that this fraction enters the variance formula in squared
form, 1n , such that

n
n · Var(Wi) becomes Var(Wi).
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Asymptotic Normality of β̂ (2)

• By the central limit theorem, the numerator in equation (3.24)
converges in distribution to a normal distribution:

1√
n

n∑
i=1

εi ·
(
Di − D̄

)
→d N(0, E[ε2 · (D− E[D])2]) (3.26)

• εi · (Di − D̄) corresponds to Wi on the previous slide.
• E[εi · (Di − D̄)] = 0 because E[εi|Di] = 0 and the law of iterated
expectations (see slide 23).

• For a variable with zero mean, Var(Wi) = E[W2
i ]. Therefore,

Var(Wi) = E[W2
i ] = E

[
ε2i ·
(
Di − D̄

)2]
= E[ε2 · (D− E[D])2] (3.27)

• The probability limit of the denominator in equation (3.24) is:

plim
(
1
n

n∑
i=1

(Di − D̄)2
)

= Var(D)
29
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Asymptotic Normality of β̂ (3)

• By Slutsky’s theorem, it holds that E
[

Wi
Var(Di)

]
= 0 because

E[Wi] = 0 and Var
(

Wi
Var(Di)

)
= E

[
W2
i

(Var(Di))2

]
.

• Therefore,
√
n(β̂ − β) converges to a normal distribution with a

zero mean and a specific variance:

√
n(β̂ − β) →d N

(
0, E[ε

2 · (D− E[D])2]
(Var(D))2

)
(3.28)

• The difference between the estimate β̂ and the true effect β
converges to zero, with a convergence rate of 1√

n as n increases.
• Put differently, the estimate β̂ converges to the true ATE β with a
convergence rate of 1√

n .
• This so-called

√
n-consistency is the fastest convergence rate

that estimators of causal effects can attain.
30
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Heteroscedasticity-Robust Variance

• Divide the expression on the previous slide by
√
n and add the

true effect β:

β̂ →d N
(
β,
E[ε2 · (D− E[D])2]
n · (Var(D))2

)
(3.29)

• The estimate β̂ converges to a normal distribution whose mean
is the true effect β and whose variance is:

Var(β̂) = E[ε2 · (D− E[D])2]
n · (Var(D))2 (3.30)

• This equation is the heteroscedasticity-robust variance formula.
• Robustness to heteroscedasticity allows the variance of the
error term ε to vary across treatment states.

• This is a plausible scenario in many empirical contexts.
31
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Homoscedasticity

Homoscedasticity
The variance of ε is the same under both treatment states.

• The variance of ε, E[ε2], does not depend on D under
homoscedasticity⇒ equation on the previous slide simplifies to:

E[ε2 · (D− E[D])2]
n · (Var(D))2 =

E[ε2] ·

Var(D)︷ ︸︸ ︷
E[(D− E[D])2]

n · (Var(D))2 =
E[ε2]

n · Var(D) (3.31)

• Homoscedasticity assumes that the treatment does not affect
the dispersion of the outcome around its mean.

• The heteroscedasticity-robust variance formula on the previous
slide is more universal as it does not impose this restriction.

• Thus, relying on equation (3.30) rather than (3.31) when assessing
the variance of ATE estimation appears more appropriate.
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Asymptotic Normality of α̂

• To show the asymptotic normality of α̂, start with α = E[Y|D = 0].
• Apply the central theorem to the subsample of nontreated
observations only:

1√n0

∑
i:Di=0

(Yi − α) →d N(0, Var(Y|D = 0)) (3.32)

• Yi − α corresponds to Wi on slide 28 and has an expectation of
zero under nontreatment, i.e., E[Yi − α|Di = 0] = 0.

• n0 is the sample size of nontreated observations.
• 1√n0

∑
i:Di=0(Yi − α) =

√n0
n0
∑

i:Di=0(Yi − α) =
√n0(α̂− α).

• Sample average outcome of the nontreated: α̂ = 1
n0
∑

i:Di=0 Yi
• α̂ converges to a normal distribution with mean α and a
variance of Var(Y|D=0)n0 :

α̂ →d N
(
α,
Var(Y|D = 0)

n0

)
(3.33)
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Mean Squared Error (1)

Mean squared error (MSE)
The mean squared error (MSE) measures the overall accuracy of a
method by using the average squared difference between β̂ and β:

MSE(β̂) = E[(β̂ − β)2]

= E[(β̂ − E[β̂] + E[β̂]− β)2]

= E[(β̂ − E[β̂])2] + 2 · (E[β̂]− E[β̂]︸ ︷︷ ︸
=0

) · (E[β̂]− β) + E[(E[β̂]− β)2]

= E[(β̂ − E[β̂])2]︸ ︷︷ ︸
variance

+(E[β̂]− β)2︸ ︷︷ ︸
squared bias

(3.34)

• The MSE can be decomposed into an estimate’s variance and its
squared bias.

• For the OLS estimate β̂, the variance corresponds to E[ε2·(D−E[D])2]
n·(Var(D))2 .
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Mean Squared Error (2)

• In the context of social experiments, the squared bias equals
zero, because β̂ is an unbiased estimate.

• For other estimators, unbiasedness may not hold, at least not in
small samples (but only when the sample size is infinitely large).

• In such cases, the MSE is a useful concept for evaluating
trade-offs between variance and bias.

• Some methods can be adjusted to increase bias while reducing
variance or vice versa.

• The key question is how these adjustments affect the overall
MSE.

• The goal is to have an overall MSE that is as small as possible to
minimize the estimation error.
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