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Common Support (1)

- Common support ensures overlap in the distribution of
propensity scores between treated and nontreated groups.

- It does not require the shape of the distributions to be the same
(in contrast to random assignment, where distributions are
expected to be the same across groups).

- In the population, this is guaranteed by the assumption
0 < p(X) < 1. In finite samples, this assumption does not
automatically ensure common support.

Common support

The propensity score distributions for treated and nontreated
groups must overlap in terms of the range of values.
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Common Support (2)

Implication of common support for average effect estimation:

- For ATET: every treated observation should have a nontreated
match with a similar estimated propensity scores.

- For ATE: each treated and nontreated observation should have
matches in the other group.

- Graphical checks: histogram or density plots by treatment group
can assess overlap in estimated propensity scores.
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Violation of Common Support

- Common support is violated if no match with a sufficiently
similar propensity score exists in the other group.

- A common solution: trimming observations with extreme or
unmatched propensity scores.

Trimming

The removal of observations whose propensity scores lack overlap
between treated and nontreated groups to enforce common
support.

- Improves internal validity by reducing bias in the trimmed
sample.

- Reduces external validity, as estimates apply only to a
subpopulation.

- Always report the number or share of trimmed observations.
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Trimming Criteria: Density-Based

- Heckman, Ichimura, Smith, and Todd (1998) propose dropping
observations for which the estimated density of estimated
propensity score is (close to) zero in (at least) one of the
treatment groups.

- Estimate densities using kernel methods (e.g., Rosenblatt, 1956;
Parzen, 1962).

- Threshold can be data-driven (e.g., based on a quantile of
estimated densities).
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Trimming Criteria: Extreme Propensity Scores

- Crump et al. (2009) propose trimming extreme propensity scores.

- Suggested rule: retain only observations with p(X;) € [0.1,0.9]
(minimizes the variance of ATE estimation under certain
conditions).

- Further alternatives: [0.05,0.95] or [0.01,0.99] - potential
trade-off concerning cut-off choice in terms of external validity
and variance.

- Dehejia and Wahba (1999) propose discarding all treated
observations with p(X;) higher than the highest value among the
nontreated when estimating the ATET.

- For ATE estimation, also discard nontreated observations with
p(X;) lower than the lowest value among treated.
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Sample-Size Dependent Trimming

- Trimming rules should be adapted to the sample size:

- In large samples, observations with extreme propensity score
values are more likely to find a match.
- Therefore, trimming becomes less necessary as n — oc.

- One possible approach: limit how much influence (weight) any
observation can have in a given sample when estimating E[Y(1)]
or E[Y(0)] — drop too influential observations.

Example: IPW estimation (see equation (4.42))

The weight for a treated unit is: Weight; = % This weight
increases as p(X;) decreases. Fixing the maximum weight to 0.05
implies that no single unit should contribute more than 5% to

E[Y(1)], see e.g. Huber, Lechner, and Wunsch (2013).
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Match Quality (Covariate Balance)

- Match quality concerns whether the estimated propensity score
balances X across groups.

- Poor balance implies risk of treatment selection bias in causal
effect estimation.

Match quality

The extent to which propensity score adjustment (e.g., matching,
IPW) equalizes the distribution of X across treated and nontreated
groups.

- Reasons for poor match quality:

- Misspecified propensity score model = use a more flexible model.
- Inadequate matching algorithm =- try a different algorithm.
- Lack of common support = apply trimming.
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Verifying Covariate Balance: t-Test

A standard approach for assessing covariate balance is the
two-sample t-test (Welch, 1947):

- Test applied to each covariate X, in matched or IPW-weighted
samples. X" denotes covariate k among matched (or weighted)
observations.

- Tests the null hypothesis: E[X]'|D = 1] = E[X]'|D = 0]

- Test statistics:

)‘<m1 _ Xmo
. (4.47)
var(Xy") var(X7°)
Topm T Tpmo

< X7 X% sample means in matched treated (m1) and nontreated
(mo) groups.
- n™ n™: number of matched treated and nontreated observations.

: VcTr(X;m), \//a\r(X;"O): sample variances of X, in the matched groups.
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Verifying Covariate Balance: Distributional Test

Kolmogorov-Smirnov test

- Instead of testing for mean differences only, we may test for
distributional differences.

- Null hypothesis: each covariate X, has the same distribution in
matched treated and nontreated groups.

- Successful balancing implies that the entire distribution of a
covariate (not just the mean) is equal across matched groups.

n
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Verifying Covariate Balance: Joint Testing

Joint regression-based test (Smith and Todd, 2005):

- Regress Xi on constant, D, p(X), higher-order terms, and
interactions of D and p(X) in the toal (rather than matched)
sample.

- If p(X) balances well, coefficients on D and its interactions with
p(X) should be close to zero.

- Null hypothesis: coefficients on D and its interactions with the
propensity score are jointly zero.

- Use an F-test to jointly test that all such coefficients are zero.
High p-value indicates good balance conditional on p(X).
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Verifying Covariate Balance: Accounting for Multiple Testing

- Testing many covariates (e.g., by t-tests) introduces a multiple
hypothesis testing problem.

- With a = 0.05 and 100 covariates, one may expect ~ 5 false
rejections even if null holds for all.

- A few significant rejections do not necessarily imply imbalance,
as multiple testing increases the risk of obtaining false positives.

- To avoid this issue, apply joint tests (e.g., F-tests) across all
covariates.

- Regress each X, on a constant and D among matched
observations.

- Test whether all D coefficients are jointly zero.
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Verifying Covariate Balance: Pseudo-R? Check

Alternative joint test is to re-estimate the propensity score after
matching:

- Estimate Pr(D = 1|X™) using the matched sample only, as in
Sianesi (2004).

- Check whether covariates still predict treatment assignment
after matching.

- The goodness of fit is measured by the pseudo-R? from this
re-estimated propensity score model.

- Interpretation: a pseudo-R? close to zero indicates good
covariate balance.

- Intuition: low predictive power of X for D implies X™ L D, i.e.,
balance.
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Verifying Covariate Balance: Standardized Differences

Issue with hypothesis tests: test statistics depend on sample size.

- t-statistic is a function of the matched sample sizes n™ and n™®°.
- As sample size grows, even negligible mean differences can lead
to rejection of the balancing hypothesis.

Standardized difference test (Rosenbaum and Rubin, 1985):
- Measures mean differences relative to the pooled variance in
the original samples.

)‘(Wﬂ _ )_<m0
- Test statistics: 100 - —f_——F (4.48)
Var(X,)+Var(x)

2
- Insensitive to the number of matched observations.

- Var(x}) and Var(X) refer to variances in the original treated and
nontreated samples (not matched).
- Thresholds (e.g., 10 or 20) used to judge balance; absolute
differences above the threshold suggest imbalance.
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Multivalued Treatments: Identification

- The selection-on-observables framework extends to multivalued
treatments D € {0,1,2,...,/}.

- Treatment effects can be identified by pairwise comparisons:
D=dvs.D=d.

Identifying assumptions (Imbens, 2000)
(Y(d), Y(d')}LD|X, Pr(D=d|X) > 0,
Pr(D=d'|X) >0, X(d)=X(d")=X (4.49)

Under these assumptions you can:

- ldentify ATE and ATET for d vs. d'.
- Apply identification strategies from the binary case (regression,
matching, IPW, DR). How?
1. Replace D with I{D = d} and 1 — D with I{D = d'}.
2. Use Pr(D = d|X) as p(X) and Pr(D = c/’|X) as1— p(X) 7
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Estimation with Multivalued Treatments

- As in the binary case, estimation via regression, matching, IPW,
or DR can be v/n-consistent and semiparametrically efficient if

plug-in parameters are estimated nonparametrically (Cattaneo,
2010).

- Propensity score matching can be applied after estimating
propensity scores Pr(D = d|X) and Pr(D = d’|X) (Lechner, 2001).

Notice:

- If assumptions (4.49) hold for all d, d’, then
{Y(0),....,Y(h} LD | X.

- This full selection-on-observable assumption is stronger then a
pair-wise version and must be carefully assessed in applications.
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Continuous Treatments: Setup

- If D is continuously distributed (e.g., training hours), then
Pr(D = d|X) becomes the conditional density f(D = d|X).

Generalized propensity score
Conditional density of treatment given covariates: f(D = d | X)
- Replace Pr(D = d|X) > 0 with f(D = d|X) > 0 in (4.49).

- If these conditions hold for all d, effects across the full
treatment range are identified.
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Continuous Treatments: Estimation

- Estimate causal effects via parametric or nonparametric
regression of Y on D and X:
- Estimate ug(X), s (x), and E[ug(X) — par ()] to estimate ATE of
D=dversusD=d"
- Estimate a“"( ) to estimate margmal treatment effect
- Alternatively, regress Y on D and f(D|X) (Hirano and Imbens,
2005), or use stratification (Imai and van Dyk, 2004).
- IPW estimation replaces indicators like [{D = d} with kernel
weights (Flores et al., 2012; Galvao and Wang, 2015):
- Define kernel weight: £((D — d)/h)/h with bandwidth h and
symmetric kernel K.
- Weight observations by closeness of D to d.

N CO L G
- ATE identified by: A = I|mMOE[ (D d‘xg = f((D:d’\Xg

SEM(d)]
aod

Also doubly robust (DR) approaches (Kennedy et al., 2017) can be
applled to estimate effects of continuous treatments 20
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Distributional Treatment Effects

- Selection on observables permits assessing effects on the entire
outcome distribution, not just averages.

- To do so, replace Y with indicator function I{Y <y}, eg. in IPW
expressions.

Distributional effect

Fyy(Y) — Fy(o)(v): effect on the treatment on the share of subjects
with outcome <y, where Fyq)(y) = E[I{Y(d) < y] denotes the
cumulative distribution function of potential outcome Y(d).

Example
Fy(0)(4,000) = 0.5: 50% would earn < €4,000 without treatment.

- DiNardo, Fortin, and Lemieux (1996) and Chernozhukov,
Fernandez-Vval, and Melly (2013) discuss the estimation of
potent|al outcome distributions. £
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Quantile Treatment Effects (1)

- QTEs correspond to treatment effects at specific ranks (e.g,,
median, quartiles) of the outcome distribution.

- Useful for studying effect heterogeneity across ranks of outcome
distribution (e.g., low- versus high-income groups).

Requirements for QTEs

- Outcome Y must be continuously distributed.
- Distribution must be strictly increasing across ranks of interest.

Example

If no one earns between 2,000 and 2,500 EUR, ranks in this interval
are undefined.

= No one-to-one mapping between quantiles and ranks.

4.8 Continuous Treatments
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Quantile Treatment Effects (2)

- The quantile function of a potential outcome Y(d) is the inverse
of its CDF:

F\?(L)(T), T€(0,1), de{0,1}
- 7: rank in the outcome distribution (e.g, 7 = 0.5 is the median).

Identification via IPW (Firpo, 2007)
Under selection on observables, quantiles can be identified by
solving: Fy ) (7) = min, £ [ﬁ (Y=y)-(r—H{Y-y< 0})}

- The loss function (Y —y) - (7 — {Y — y < 0}) targets quantiles
(not means).
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Quantile Treatment Effects (3)

QTE

The quantile treatment effect at rank 7 is: A(7) = F;(l)
It compares outcome values at the same rank under treatment and
nontreatment.

Example

Cumulative
distribution

function
Fyly) Fy(1)ly)
.

The figure shows: at rank ,
quantiles y = Fyg(7)

and y' = Fyq(7)

= QTE=Yy —V.

y v Outcome

Yoy =A) 2%
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Dynamic Treatment Effects

- Dynamic treatment effects: effects of sequences of treatments
over time (Robins, 1986, Robins, Hernan, and Brumback, 2000).

- Examples: courses (language course followed by IT course),
medical interventions (surgery followed by physiotherapy).

- Control for time-varying confounders affecting outcome and
treatment over different periods.

- Sequential selection-on-observables assumes random
assignment conditional on past information.

Average treatment effect of a sequence

A(dy, 63) = E[Y2(dy) - Ya(d3)] (4.53)
Example
ATE of (1=language, 2=IT) vs. no training: d, = (1,2), d5 = (0, 0)

4.9 Dynamic Effects
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Sequential Selection on Observables

- Covariates X; evolve over time and may be affected by past
treatments/outcomes.

- Xo: pre-treatment.

- Xq: observed after D;, before D,, may include ;.

- Confounding is dynamic: must control for post-treatment
covariates.

Sequential selection-on-observables assumption

Yz( )J_Dq |X0 and Yz( )J_D2|D1,X0,X1
PI’(D1 = d‘]|XO) > 0, PI’(DZ = dz‘DhXo,Xj) >0 (454)

4.9 Dynamic Effects
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Graphical Illustration

- No unobserved confounding of (D4, Y2) given Xo and (D, Y>)
given (D1, Xo, X7).

- D, may depend on Ds: IT training more likely after language
course.

N

G

Figure 4.12: Sequential conditional independence with posttreatment
confounders s
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Regression and IPW

- Nested regression approach:
A(d,, d)) = E[E[E[Y2]D, = dy, Xo, X1][D1 = di, Xo]
— E[E[Y|D, = d), Xo, X1]| D1 = dif, Xo]] (4.55)

- IPW approach using sequential propensity scores (Lechner,
2009):

Y- 1{D;y = d:}I{D, = db}
de(XO)pdz(Dthxﬂ

_ Y HDi= d)iD; = dg}} (456)
p%(Xo)p® (D1, Xo, X1)

where p%(Xy) = Pr(D; = dq]Xo) and

de(Dq,Xo,Xﬁ = Pr(D, = d,|Dn, Xo, X7) are the propensity scores in

the two periods.
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Doubly Robust Approach

- DR approach combining outcome models and sequential
propensity scores (Robins, 2000):

A(d,, dy) = E[y% — %], (4.57)
I{Dy = d1}I{D; = da}(Y2 — p"(d;, X0, X4))
P (Xo)p% (d1, Xo, X1)
n {Dy = d1}(1"(dy, X0, X1) — v"(d,, X0))
P (Xo)

with 12"2(d,, Xo, 1) = E[Y2|D, = d,, X0, X1] and
v"2(d,, Xo) = E[E[Y2|D, = d,, X0, X1]|D1 = d1, Xo] being the (nested)
conditional mean outcomes.

where ¢ =

+1"%(d,, Xo),
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Stronger Assumptions

- If DyLY5(d,)|D1, Xo, we may drop X; from models.

- Reduced data requirement: no posttreatment covariates needed
to be controlled for.

Figure 4.13: Sequential conditional independence without posttreatment
confounders
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Simplified DR Approach

- DR expression simplifies to:

{D1 = di}I{D; = da}(Y2 — p"*(d5, Xo))
p% (Xo)p%(d1, Xo)

- Equivalent to multivalued discrete treatment evaluation.

P = +p"%(dy, o) (4.58)
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When Post-treatment Covariates Matter

- Long time gaps between treatments may invalidate simpler
assumptions.

- Individual characteristics may change over time and act as
confounders jointly affecting the second treatment and the
outcome (e.g, health, labor behavior).

- In such cases, controlling for X; is necessary to make identifying
assumptions more credible.

33
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Causal Mediation Analysis

How can we assess the causal mechanisms through which the
treatment affects the outcome?

Mediation analysis (Robins and Greenland, 1992, Pearl, 2001)
Disentangles a total treatment effect into one or several indirect
effects (via intermediate variables), as well as a direct effect.

- Indirect effects operate through one or several intermediate
variables that are commonly referred to as mediators.

- Direct effect includes any causal mechanisms not operating
through the mediators.

dynan ffect 410 Mediation Analysis
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Controlled Direct Effect

Controlled direct effect

Net effect of D; obtained by controlling for the mediator D,, when
setting it to the same value for everyone in the population.

- The sizes of the direct effects may differ across values of D, if
there are interaction effects between D, and D,.

Example

- Assessing the effect on earnings of a sequence of training
programs (job application training, IT course).

- Direct effect of the job application training net of participation
in the IT course is obtained by setting the latter to zero.

- This implies assessing the treatment effect A(d,, d5) with
sequences d, = (1,0) and d, = (0, 0).

36
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Natural Direct and Indirect Effects (1)

Natural direct effect

Effect of D;, conditional on the value of the mediator D, that is
naturally chosen as a reaction to D.

Natural indirect effect
Effect operating through the choice of D, in reaction to D;.

- The naturally chosen value of D, under a specific value of D; may
vary across individuals (e.g., as a function of their preferences).

- Depending on the empirical context, either controlled or natural
effects may be more relevant.
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Natural Direct and Indirect Effects (2)

- Let Dy be a binary treatment and D, a binary mediator.
- Extend potential outcome notation:

- D,(dh): potential mediator as a function of di € {0, 1}.
- E[Y2(dh, D2(d7))]: potential outcome conditional on Dy = dq and the
potential mediator under Dy = df (with di, d; € {0,1}).

- Total ATE of D; on Ys:

A(Dy) = E[Y>(1, D3(1)) — Ya(0, D5(0))] (4.59)
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Natural Direct and Indirect Effects (3)

- The total effect of D; is the sum of the natural direct and indirect
effects defined based on opposite treatment states:
A(D1) = E[Y2(1,D2(1)) — Y2(0, D2(1))] + E[Y2(0, D2(1)) — Y2(0, D2(0))]
=0(1) =5(0)
E[V2(1, D2(0)) — Y2(0, D2(0))] + E[Y2(1, D2(1)) — Y2(1, D2(0))] (4.60)

=6(0) =5(1)

- 6(1) and 6(0): natural direct effects of Ds.
- 6(1) and §(0): natural indirect effects.

- #(1) and 6(0) (and §(1) and §(0)) may differ if there are
interaction effects between D; and D,.

- Direct and indirect effect sum up to the total effect if interaction
effects between D; and D, are either accounted for in the direct
or the indirect effect, but not both at the same time.
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Identifying Assumptions

- Y5(1,D,(0)) and Y,(0, D,(1)) are never observed.
= ldentification of natural direct and indirect effects requires
stronger assumptions than for controlled or dynamic effects.

Assumption 1 (conditional independence of the treatment):

{Y2(d,), Da(d})} LD1|Xo for d, = (ch, d) and dh, d}, dz € {0,1,...,J}  (4.61)

Assumption 2 (conditional independence of the mediator):

YQ(QZ)J_D2|D1,X0 fOI’gZ = (d],dz) and dudz S {0717. oo 7]}

Assumption 3 (common support):

PF(DW = dw‘Xo) > 0 and Pr(Dz = d2|D1,Xo) > 0 for dw,dz S {O,’I, .. ,]}

- Here we allow for a multivalued, discrete treatment.
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Regression and IPW

Identification based on nested conditional mean outcomes (may be
implemented by regression; Imai, Keele, and Yamamoto, 2010)

E[Y2(dh, Da(d))] = E[E[1"2(d, D2, Xo)|D1 = d, Xoll, (4.62)

where u'2(D1, Dy, Xo) = E[Y2|D1, D2, Xo] is the conditional mean
outcome, and d,, d; are specific values of the first treatment.

IPW-based identification (Hong, 2010)
{Dy = dq} - pP(d}, Xo) - Y2
P4 (Xo) - pP2(dh, Xo) ’

where pd7(Dq,Xo) = Pr(D, = d,|D4,Xo) is the propensity score of
the mediator.

E[Y>(dh, Do(d}))] = E (4.63)
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DR Approach

DR identification (combines IPW with conditional mean outcomes;
Tchetgen Tchetgen and Shpitser, 2012)
E[Y(ch, Da(d5))] = E[v™1],

. ’ /{D1 :dq}~pD2(d/,Xo)
with % = !
V=T 00 0) - (A Xo)

I{D; = df}
p% (Xo)
+ E[u"*(d1, D2, X0)|D1 = d, Xo]

-[Ya — p"2(dh, D2, Xo)]

+ [ (d1, D2, Xo) — E[u"*(d1, Dy, Xo) | D1 = df, Xo]]

(4.64)

%
tr
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Avoiding Mediator Probability/Density

Alternative IPW-based identification (Huber, 2014a)

v e | D = di} - p%(D2,Xo) - V>
E[Y2(dy, Da(d?7))] = E [ [)dﬂ(Dz,Xo) . DdW/(Xo) 1 (4.65)

- When the mediator is continuously distributed and/or consists
of several variables, estimating p(di,Xo) may be cumbersome.

- p%(D1,Xo) can be avoided by including an alternative treatment
propensity score de(Dz,Xo) = Pr(Dy = d1|D2, Xop).
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Path-Wise (Partial Indirect) Effect (1)

- Assuming as-good-as-random assignment of mediator D, given
only treatment D; and baseline covariates X, may be too strong.

- In many cases, posttreatment covariates X; also need to be
controlled for.
= Replace Y,(d,)LD,|Ds, Xo with Yo(d,)LD3|D1, Xo, X4.
= Additional assumption: No confounders that jointly affect (i)
D and X4, given Xo and (ii) X; and D, or Y5, given D1, Xo.

- However, additional assumptions are not sufficient for the
nonparametric identification of natural direct and indirect
effects - is only obtained if Xy and D4 are sufficient to control for
confounders of D, and Y, (Avin, Shpitser, and Pearl, 2005).

- However, under the additional assumptions, we can identify the
path-wise effect of D; on Y, directly operating via D,, i.e.,

D1 — Dy — Ys.

Lb
4.7 Prac ues 8 Continuous Tr ent 1.9 Dynamic Effects 410 Mediation Analysis 411 Outcome Attritio
0000000000000 0 000000000 000000000 0000000000000 000000



Path-Wise (Partial Indirect) Effect (2)

- Path-wise (or partial indirect) effect with a binary treatment
based on IPW:
(0 = € [0 =0 PO = )
PI’(D] = d]‘Dz,Xo.,Xj) PF(D1 = dj‘Xo)

o ((Pr(D1=1[D2,X0,X1) 1~ Pr(D1 =1[D2, X0, %) (4.66)
PF(D1 = ”Xo,X]) 1— PF(D1 = 1|X0,X1) ’ ’

with 6°(d:) denoting the pathwise effect of Dy — D, — Y,.

- 0P(d4) represents only a partial indirect effect because it omits
any indirect impact that operates via X; (i.e, D1 — X; — D; — Y»).

- For this reason, it does not coincide with the natural indirect
effect o(dh).
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Full Natural Indirect Effects with Posttreatment Confounders (1)

- To identify the full natural indirect effect, we need to impose
further assumptions, such as:

No interaction effects between D; and D, (Robins, 2003)

- Effect of the treatment does not depend on that of the mediator
and vice versa.

- For a binary treatment: Y(1,m) — Y(0, m) = Y(1,m") — Y(0,m’) for
any distinct mediator values m # m’.

- Unattractive in many empirical contexts, as it severely restricts
effect heterogeneity.

Homogeneous treatment-mediator interaction effect (Imai and
Yamamoto, 2013)

- Relaxes the assumption above, but assumes interaction effect to
be the same for different subjects.
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Full Natural Indirect Effects with Posttreatment Confounders (2)

Zero average interaction effect (Tchetgen Tchetgen and
VanderWeele, 2014)

- Average interaction effects of Xy and D, on Y5 are zero.

Independence or known association of X;(1) and X;(0) (Robins and
Richardson, 2010; Albert and Nelson, 2011)

- Potential values of X; under treatment and nontreatment are
independent or the form of their statistical association is known.

Homogeneous path effects given X, (Xia and Chan, 2021)

- Given Xo, average effects operating via the paths D; — Y, and
Dy — X; — Y, are homogeneous across values of M(0).

= All assumptions impose specific constraints (to be scrutinized in
empirical contexts).
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Outcome Attrition and Posttreatment Sample Selection

- Problem: outcome of interest is observed only for a nonrandom
subsample in the data.
- Outcome attrition:
- Outcome is measured in a follow-up survey, but some participants
cannot be reinterviewed (e.g., due to relocation or refusal).
- Posttreatment sample selection:
- The outcome is observed only conditional on some other
posttreatment variable (e.g., wages only if employed).
- Sample selection and outcome attrition can create bias in
causal effect estimation—even if treatment is randomized.

- Are there conditions that permit us to fix this problem?
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Missing at Random (MAR) Assumption (1)

- Impose a selection-on-observables assumption with respect to
outcome attrition/sample selection:

Missing at random (MAR) assumption (Rubin, 1976)

Outcome attrition/sample selection is as good as random,
conditional on observed information (e.g., covariates, treatment).

- Under the following assumptions, we can assess the ATE of the
(possibly multivalued) treatment D:

Yz(d1)J_D1 |Xo and Y2(d‘\)J_D2 | Dq,Xo,X1
PF(D1 =d, ‘Xo) >0 and Pr(Dz =d ‘ D1,X07X1) >0 (467)

- D, is a binary indicator of whether the outcome is observed.

- Yis known only if D, =1, but unknown if D, = 0.

- The potential outcome Y>(D-) is a function of Dy only, but not of
the mdlcator for |ts observablllty D,. 50
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Missing at Random (MAR) Assumption (2)

Figure 4.14: Causal paths under sequential conditional independence

OO

- Causal graph satisfies the assumptions on the previous slide.

51

4.7 Prac e 8 Continuous Tr € 4.9 Dynan ffect ) Mec on Analysis 411 Outcome Attrition
0000000000000 0 000000000 000000000 0000000000000 0 000e00



Using MAR to Identify the ATE

- The conditions in expression (4.67) are similar to those
suggested for dynamic treatment effects.
- Key difference: We now assume that Y5(dy)LD;|Dy, Xo, X1.
- This implies that D, does not affect Y, as it is not a treatment.

- Also implies: D, is not associated with unobserved characteristics
affecting Y, conditional on covariates Xo, X1 and treatment Ds.

- Apply the identification results for dynamic treatment effects for
assessing treatment effects under outcome attrition or sample
selection.

- Simply set D, = 1in any conditional mean outcome and
propensity score.
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Simplified Confounding

- The framework simplifies if conditioning on X; is not required.

- Then, outcome attrition/sample selection is as good as random
given treatment D; and baseline covariates X, alone.
- In this case:
- We can drop X; from the assumptions in expression (4.67).
- Any conditional mean outcomes or propensity scores in the
expressions for the identification of the ATE no longer require X;.
- Simplification is unrealistic when there is a substantial time lag
between the treatment and the measurement of the outcome.

- In these scenarios, posttreatment confounders affecting both D,
(e.g., employment) and Y, (e.g., wage) likely exist.
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