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Causal Machine Learning (CML) for Covariate Selection

- Traditional methods assume that appropriate set of covariates X
is known and preselected by the researcher:
- Requires contextual knowledge about which covariates to include.
- Risk of ad hoc selection leading to incorrect p-values and
confidence intervals.

- Causal machine learning (CML):
- Controls for covariates in a data-driven way.

- Provides valid inference (e.g, p-values, confidence intervals) under
specific assumptions.

- Particularly useful in high-dimensional data with many potential
covariates (wide data) where manual covariate selection is
complicated or infeasible.
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Causal Machine Learning (CML) for Covariate Selection

- Data-driven covariate selection does not remove the need for
fundamental identification assumptions in causal analysis.

- CML can be applied if there is a subset of covariates that suffices
to effectively tackle confounding but is a priori unknown.

- Assumption: A limited subset of covariates permits controlling
for the most important confounders.
- If this assumption holds, CML can be:
- Approximately unbiased in sufficiently large samples (bias is
negligibly close to zero).
- v/n-consistent, even if confounding is not perfectly controlled for.
- Beyond estimating average effects, CML can detect effect
heterogeneities across subpopulations defined by covariates X.
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Double Machine Learning (DML)
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- Double machine learning (DML) is a CML approach for estimating

the average treatment effect (ATE) or other causal effects.

- DML relies on Neyman (1959)-orthogonal functions for treatment

effect estimation.

- Neyman-orthogonality implies that treatment effect estimation

is relatively robust to approximation errors in the estimation of:
- Treatment propensity score p(X).
- Conditional mean outcomes p(X) and po(X).

- Doubly robust (DR) estimators satisfy this robustness property.
- Advantage:

- By incorporating both w1 (X), no(X) and p(X), approximation errors
enter multiplicatively into the estimation problem.

- Therefore, small errors in either become negligible when
multiplied.
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Predictive ML vs. Causal ML

- CML is conceptually different from predictive machine learning.

- Aim of predictive ML: Accurately predict an outcome based on
minimizing the prediction error (e.g, mean squared error).

- Causal effects of any of the predictors cannot be learned from
this forecasting approach:
- Correlation between treatment D and covariates X generally leads
to a biased causal effect estimate of D on outcome V.
- Even without such a correlation, bias can arise if the causal effect
of D on Y is small relative to the importance of X for predicting Y.
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Role of Machine Learning in DML

- In DML, machine learning is not directly applied to treatment
effect estimation.

- Instead, it predicts plug-in parameters, p(X), u(X), and po(X).
- Machine learning is used to separately predict:
- D as a function of X.
- Yamong the treated as a function of X.
- Y among the nontreated as a function of X.
- This is motivated by the fact that covariates X are used only to
tackle confounding, not for estimating causal effects.

- The causal effect of D is estimated using the sample analog of
equation (4.45).
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Lasso Regression (1)

- Both OLS and lasso regression minimize the sum of squared
residuals.

- Key difference: Lasso regression (Tibshirani, 1996) includes a
penalty term A on the sum of the absolute values of the slope
coefficients.

- For A = 0, lasso regression is equivalent to OLS.

- Purpose of penalization:

- Constrain the influence of regressors when predicting the outcome.
- Optimally balance bias and variance by shrinking the absolute
coefficients of less important regressors toward zero.

- Lasso regression may even shrink some coefficients exactly to
zero, effectively dropping irrelevant/less relevant regressors
from the model.

9

51 Motivation CM 5.2 DML and Lasso Regression 5.3 Further ML Algorithms
000 0000@00000000 00000000000000000



Lasso Regression (2)

For predicting u(X), lasso regression solves the following penalized
minimization problem to obtain the coefficients:

p
(& Br,...)=arg _min > (Yi—a" = BiXn—BXp— .. +AD_ 187 (51)
=

a*,BrBT, . iD=

- p: Number of regressors (including higher-order and interaction
terms of X).

- X: Nonnegative penalization term on the sum of absolute slope
coefficients.

- | - |: Absolute value.
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Choosing X via K-Fold Cross-Validation

- XA may be chosen by a cross-validation procedure.

- Determines the optimal amount of shrinkage that minimizes the

MSE for outcome prediction among candidate values for A.

- K-fold cross-validation:

- Observations are randomly divided into K nonoverlapping subsets.

- ke {1,...,K} is a specific subset of observations, and k; is the
subset in which observation i is situated.

- Select X that minimizes:

> 1= e (X (52)

i:Dj=1

where fiy _p (X;) is the prediction of u1(X) based on coefficients
estimated from observations not in i's subset k;.
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Sample Splitting

- Use independent samples for estimating the plug-in parameters
p(X), u1(X), and po(X) and the treatment effects.
- Process:
- Randomly divide the sample into two nonoverlapping folds.
- Estimate p(X), u(X), no(X) in the first fold.

- Predict plug-ins and estimate treatment effects (e.g., ATE) in the
second fold.

- Sample splitting avoids correlations between the two estimation
steps.

- For this reason, it prevents overfitting bias related to fitting the
models too much to the data points in a sample.
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Cross-Fitting

- In sample splitting, only part of the data is used to estimate the
causal effect, thus increasing the variance.
- This issue can be tackled by cross-fitting, which consists of
swapping the roles of the folds in a second estimation round:
- The second fold is used for obtaining the lasso coefficients for the
plug-in models.
- The first fold is used for treatment effect estimation.
- Compute the final effect estimate (e.g., ATE) by taking the
average of the estimates in either fold.
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Graphical Illustration

Figure 5.1: Sample splitting when estimating the ATE.
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Properties of DML with Cross-Fitting

v/n-consistency

- DML with cross-fitting can be y/n-consistent and asymptotically

normal (Chernozhukov et al., 2018).

- v/n-consistency requires that plug-in estimates of p(X), u1(X)

and po(X) converge to true values at a faster rate than n="/4,

- This rate is slower than y/n but attainable by many machine

learning or deep learning algorithms under certain conditions.

- Asymptotic variance is unaffected by machine learning and

cross-fitting (not higher than if covariates X were known a priori).

- Standard errors can be computed using conventional asymptotic

approximations in large samples.

- TMLE (chapter 4.6) can also attain y/n-consistency with the

machine learning and cross-fitting, see Zheng and van der Laan
(201M).

15

ation CM 5.2 DML and Lasso Regression 5.3 Further M C

> sorithms
0000000000800 0000000000000 0000



Lasso Regression and Cross-Fitting

Approximate sparsity
Number of important predictors required to decently approximate
the plug-in parameters (up to minor approximation error) is small
relative sample size n.

- Lasso regression attains the n—"/“-rate requirement under
approximate sparsity (Belloni, Chernozhukov, and Hansen, 2014).

- With cross-fitting, the number of important covariates or
interaction/higher-order terms must be small relative to n.

- Without cross-fitting, the number of important covariates or
interaction/higher-order terms must be small relative to v/n
(stronger condition).
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Partialling Out

Partialling out approach:

- Remove influence of covariates X on outcome Y and treatment D
(Robinson, 1988) prior to assessing the treatment effect.
- Process:
- Split data into two folds.
- In the first fold, use lasso regression or postlasso OLS to obtain
coefficient estimates for the models E[Y|X] and E[D|X].
- In the second fold, predict outcome residuals Y — E[Y|X] and
treatment residuals D — E[D|X].
- In the second fold, regress outcome residuals on treatment
residuals using OLS to estimate the ATE.
- Swap roles of the data sets and average the ATE over both folds.

- v/n-consistent if postlasso-based estimators of E[Y|X] and E[D|X]
converge at least with rate n="/* to the respective true models.
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Introduction to Further Machine Learning Algorithms

Other machine learning methods:

[e]e]e}

- Share the idea of optimally trading off the bias and variance in

predicting the plug-in parameters p(X), u1(X), o (X).

- Applicable in DML or partialling out approaches if they satisfy

regularity conditions like n="“-convergence.
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Ridge Regression and Elastic Nets

Ridge regression:

- Ridge regression (Tihonov, 1963) penalizes sum of squared
coefficients on regressors (L> norm).
- Comparison of lasso and ridge regression:
- Ridge regression cannot shrink coefficients exactly to zero, while
lasso regression can (as it is based on an L' norm).
- Thus, only lasso regression is able to perform variable selection.
- Depending on the data, either ridge or lasso regression might do
better for estimating p(X), u1(X), o (X).

Elastic nets:

- Weighted average of lasso and ridge penalization (e.g., 60%
lasso, 40% ridge penalization).

- Might outperform any single method.

- Optimal weights can be determined via cross-validation.
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Decision Trees: Introduction

Decision trees (Morgan and Sonquist, 1963): recursively split the
covariate space (i.e, the set of possible values of X) into
nonoverlapping subsets.

- Tree structure:
- Nodes represent covariate values at which the sample is split.
- Leaves are terminal subsets where no further splitting occurs.

- Splitting process:
- Finds the split that entails the highest reduction in the summed
sums of squared residuals across subsets.
- Greedy approach: Split is optimal at the current stage without
assessing performance several splits ahead.
- Applied recursively: Subsets are split into further subsets.

il
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Decision Trees: Splitting Process Example (1)

Example

- Suppose migrant status is the most predictive element in X for
treatment assignment.
- Most migrants receive treatment (e.g., a language course), while
most natives do not.
- The sum of the migrant status-specific sum of squared residuals
is lower than the sum of squared residuals in the total sample:

n
Z (Dr - Dmigrant:‘\)z o Z (Dr - Dmigrant:O)z < Z(Dr - D)z (53)

i:migrant=1 iimigrant=0 i=1

- Migrant subset might be further split by age (e.g.,, < 50 vs. > 50).

- Further splits are chosen to maximize additional reduction in the
summed sum of squared residuals across all subsets.
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Decision Trees: Splitting Process Example (2)

Example (cont.)

- Tree structures can be represented by regression equations:

D; = & + Bi/{migrant = 1, age < 50} + B>/{migrant = 1,age > 50} + V;. (5.4)

- &: Average treatment in the reference category (e.g., natives).

- B, By: Differences in the treatment averages between the
respective other subset and the reference category.

- Vi Estimated residual of the treatment equation.

- Based on the coefficient estimates, the estimated propensity
score can be computed for each subset, e.g.:

p(migrant = 1,age < 50) = & + /3
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Decision Trees: Stopping Rule

- Splitting continues until a predefined stopping rule is reached
(e.g., maximum subsets or minimum observations per subset).
- There is a variance-bias trade-off concerning the number of
splits in decision trees.
- More splits imply that the observations within a subset are more
homogeneous in terms of X, which reduces the bias.
- More splits also imply fewer observations per subset to estimate
conditional mean outcomes, which increases the variance.

- Use cross-validation to determine the optimal number of splits
that minimizes MSE by optimally trading off bias and variance.
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Decision Trees: Advantages and Disadvantages

- Advantages:
- Nonparametric method: Splitting does not impose functional form
assumptions about how D and X are associated.
- Greater model flexibility compared to a parametric approach like
lasso regression.
- Disadvantages:
- Estimated propensity score p(x) changes discontinuously across
subsets:

- P(x) is an unweighted average of the outcomes of all observations
with X values in the same subset as value x:

b = Dm0 DX € L

S X € L}

- Ly: subset (or leaf) in which value x is situated.
- Discontinuity results from the nonsmooth indicator functions in (5.5).

- High variance: Small data changes can entail substantially
different splitting rules.

(5.5)
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Bagged Trees (1)

Bagging (bootstrap aggregating; Breiman, 1996) mitigates the issue
that a single decision tree with many leaves likely suffers from a high
variance.

- Repeatedly draw bootstrap samples (with replacement) from the
original data.

- Estimate trees in each bootstrap sample.

- Predict treatment/outcome by averaging predictions from all
trees:

. T = . T 0, D0 {xb e b
B =138 =13 2271 | {ng L= e

B
b=1 b=1

- B: Number of bootstrap samples
- b: Indexes the parameters (e.g, treatments, covariates, leaves) in a

specific bootstrap sample b.
26
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Bagged Trees (2)

[e]e]e}

- Bagging has smaller variance than basing propensity score

estimation on a single tree.

- This procedure also implies p(x) is a smooth function of X:

n
p(x) = Z w;(x)P2esed . p;, (57)
where =

B
W b'}ggcd Z I{X € Lb}
B L X e L}

- Weights w;(x)P2&ged are smooth in X due to averaging over the

indicator functions of individual trees.

- They depend on predictive power of regressors, reducing

sensitivity to weak predictors.
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Random Forests

Random forests (Ho, 1995; Breiman, 2001) are a further variation of
tree-based methods.

- Similar to bagged trees:
- Rely on repeatedly drawing samples from the original data for

estimating many trees.
- Aggregate (or average) predictions across trees.
- Random forest-based predictions can be represented by smooth

weighting functions.
- Key difference: At each split, only a random subset of covariates
is chosen as potential variables for splitting.

- Goal: Reduce correlation of tree structures across samples to
further reduce variance in the plug-in parameter estimation.

28
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Boosting and BARTs

Boosting (Freund and Schapire, 1997):

- Improves weak machine learners through sequential application.
- Process:

- Apply a weak learner (e.g., a simple decision tree with few splits).

- Compute residuals (e.g, difference between treatment and average

treatment in a leaf).

- Apply the learner to those residuals again.

- Repeat these steps many times.
- Permits flexible approximation of the association between the

covariates and the variable to be predicted.

Bayesian additive regression trees (BARTs) (Chipman, George, and
McCulloch, 2010):

- Includes regularization prior in boosting process: penalizes too
many splits in the tree structure to prevent excessive variance.
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Neural Networks

Neural networks (McCulloch and Pitts, 1943; Ripley, 1996):

- Fit a system of nonlinear regression functions to flexibly model

5.1 Mo

[e]e]e}

the influence of regressors/covariates on a variable to be
predicted (e.g. outcome).

- Regressors serve as inputs for nonlinear intermediate functions

(e.g., logistic or rectifier functions) called hidden nodes.

- The predicted values obtained from hidden nodes are inputs for

the output layer (the model of the predicted variable).

- Hidden nodes can be arranged in a single layer (shallow

network) or across multiple layers (deep network), where earlier
layers feed into later ones that ultimately generate the
outcome/treatment prediction.

- Several layers of hidden nodes allow modeling interactions.
- Trade-off: More hidden nodes and layers reduce bias, but

increase variance. N 30
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Graphical Illustration

Figure 5.2: A neural network for treatment prediction.
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Extensions of Basic Neural Networks

Deep learning: Refined and extended versions of basic neural
networks.

- Convolutional neural networks (CNNs; LeCun et al., 1998):
- Learn autonomously to create relevant predictors from
unstructured data (e.g., images).
- Use filters to represent particular spatial patterns (e.g., edges) by
numeric features.
- Features are typically aggregated by a pooling step (e.g., by taking
average or maximum values over adjacent features).
- Filtering and pooling steps can be repeatedly applied to further
transform and aggregate the features.
- Refined features are used as regressors in a standard neural
network.
- Recurrent neural networks (RNNs):
- Allow feedback processes between hidden nodes in distinct
hldden layers when opt|m|zmg pred|ct|on £
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Support Vector Machines

Support vector machines (Boser, Guyon, and Vapnik, 1992):

- Nonlinearly transform covariates to fit a linear hyperplane in the
transformed covariate space.
- For a binary treatment D, the hyperplane accurately separates
the treatment values into two subsets:
- One with mostly treated units (D = 1).
- The other with mostly nontreated units (D = 0).
- The hyperplane is fitted to maximize the distance to the closest
observation from either subset.
- This maximizes confidence in the classification into
predominantly treated and nontreated subsets.

33
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Ensemble Methods

Ensemble methods (van der Laan, Polley, and Hubbard, 2007; Zhou,
2012):

- Combine several machine learning algorithms to make
predictions.

- Individual predictions of machine learning algorithms are
combined using a simple or weighted average.

- Optimal weights may be determined by cross-validation to
maximize predictive accuracy.

- Ensemble methods may outperform individual algorithms in
terms of prediction.
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