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Motivation (1)

Why instruments?

- The selection-on-observables assumption fails if unobserved
factors influence both treatment and outcome (even when
controlling for covariates).

- Example: Training program with random assignment but
imperfect compliance; some offered training choose not to
participate.

- Compliance may depend on unobserved traits (e.g. ability,
motivation) that also affect wages.

- Comparing treated vs. untreated does not identify the causal
effect, even conditional on observed covariates X.
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Motivation (2)

- If random assignment (denoted by 2) satisfies an exclusion
restriction (affects Y only through treatment participation D), it
can serve as an instrument, see Wright (1928).

- Intuition: randomization identifies the causal effect of Zon Y,
which operates only through Z's effect on D.

- The ratio (effect of Z on Y divided by effect of Z on D) yields the
causal effect of D on Y for compliers (those only taking the
treatment when randomly assigned).

- This effect is the Complier Average Causal Effect (CACE), also
called the Local Average Treatment Effect (LATE).
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Compliance Types

- IV framework of Imbens and
Angrist (1994) and Angrist,
Imbens, and Rubin (1996):

- Binary treatment variable D TElele 1k Complianss 3es,

and instrument Z, such that () D(0) Type
d,z e {0,1}.

- Potential treatment decision - & tAl\I’(\la:/S
D(2) if the instrument Z takes Ca ¢ Sl.
the value z € {0,1}. . DZ?eprslers

- Individuals satisfying 0 Niever
(A1) =7, 210 = B &z takers
compliers.

- The remaining three groups
are noncompliers.
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Identifying Assumptions (1)

- Potential outcomes Y(d, z) given the treatment d € {0,1} and
instrument z € {0, 1}.

- The following instrumental variable assumptions identify the
LATE:

{D(2), (7, d)} LZ forz,Z,d € {0,1}, Y(1,d) = ¥(0,d) = Y(d),

Pr(D(1) > D(0)) =1, E[D|Z=1] — E[D|Z = 0] # 0. (67)

- The listed identifying assumptions areindependence, exclusion
restriction, monotonicity, and relevance.

- The first line of equation (6.1) is also referred to as IV validity,

consisting of both the independence assumption and exclusion
restriction.
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Identifying Assumptions (2)

Independence

The instrument Z is independent of potential treatments and
potential outcomes, such that there are no variables jointly
affecting Zand D or Y:

{D(2),Y(Z',d)}LZ for z,Z',d € {0,1}.

Exclusion restriction

The instrument Z does not affect the potential outcome conditional
on the treatment, such that the instrument does not have have a
direct effect on the outcome Y other than through the treatment D:

Y(1,d) = Y(0,d) = Y(d).
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Identifying Assumptions (3)

Monotonicity
The potential treatment state D(z) of any subject does not decrease
in the instrument when switching Z from 0 to 1:

Pr(D(1) > D(0)) = 1.

Relevance
A first-stage effect of the instrument Z on the treatment D exists:

E[D|Z = 1] — E[D|Z = 0] # 0.

6.1 Local Average Treatment Effect \binary Ir | | A € ion:
000000800000 I




Graphical Illustration

- Consider a causal graph with instrument Z, treatment D, and
outcome Y.

- Unobserved variables U might jointly affect D and Y, also called
treatment endogeneity.

- The following scenario satisfies IV validity:

==

A A

Flgure1 An mstrumentalvamable framework 9
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Local Average Treatment Effect (1)

- Under the identifying assumptions in equation (6.1), we can
identify the LATE among the compliers:

Apy=1,0(0)=0 = E[Y(1) = Y(0)[D(1) = 1,D(0) = Q]. (6.3)

- For estimation of an average effect like LATE, the identifying
assumptions can be relaxed.

- For average effects, we do not have to impose full
independence, but the weaker mean independence suffices:
E[Y(z,d)|D(1), D(0),Z = 1] = E[Y(z,d)|D(1),D(0),Z = 0] =
E[Y(z,d)|D(1),D(0)] for z,d € {0,1}.

- For average effects, also the exclusion restriction can be relaxed
as follows: E[Y(1,d)|D(1), D(0)] = E[Y(0,d)|D(1),D(0)] =
E[Y(d)[D(7), D(O)].
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Local Average Treatment Effect (2)

- Under the assumptions in equation (6.1), a binary instrument
and treatment, the LATE is identified based on
E[Y|Z =1] — E[Y|Z = 0] and E[D|Z = 1] — E[D|Z = 0].

- The first expression corresponds to the intention to treat (ITT)
effect of the instrument on the outcome.

- The second expression is the first-stage effect or share of
compliers.

- The ITT corresponds to the first-stage effect multiplied by the
LATE among the compliers:

E[Y|Z = 1] — E[Y|Z = 0] = Ap(1)=1,0(0)=0 - (E[D|Z = 1] — E[D|Z = 0])

E[Y|Z = 1] — E[Y|Z — ]
A1 p(0)0 = .
© S0M=1.00)=0 = F[p|7 = 1] — E[D|Z = 0]

(6.4)
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Local Average Treatment Effect (3)

- As shown in equation (6.4), the LATE for compliers equals the ITT
effect divided by the first-stage effect.

- This ratio is called the Wald estimand.

- Alternatively, one can (1) regress Y and D on a constant and Z
and (2) divide the coefficient on Z in the outcome regression by
the coefficient on Z in the treatment regression.

- Two-stage least squares (TSLS) regression is another alternative,
regressing D on a constant and Z (first stage) and then Y on a
constant and the predicted treatment from the first stage.

- All these approaches yield the same y/n-consistent and
asymptotically normal estimator of the LATE among the
compliers under mild statistical conditions.
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Practical Considerations

- TSLS has the advantage that it directly yields the standard error
of the LATE estimate, which accounts for both estimation
uncertainty in the first- and second-stage regression.

- Moreover, TSLS can be used to estimate the potential outcomes
(rather than the effect) among compliers.

- Weak instrument problem: If the first-stage effect approaches
zero, the Wald estimand goes to infinity, which implies that the
variance of the LATE estimation explodes.

- Under a weak instrument, conventional standard errors and
confidence intervals may be unreliable and misleading,
particularly in small samples, see Staiger and Stock (1997).

- For alternative approaches to inference under weak instruments,
see Anderson and Rubin (1949), Stock, Wright, and Yogo (2002),
and Keane and Neal (2021), among others.
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Conditionally Valid Instruments

In many empirical applications, the identifying assumptions might
not hold unconditionally, i.e., without controlling for covariates.

Example
- Card (1995) uses geographic proximity to college as instrument Z
for education D to assess earnings Y.

- Proximity likely reduces education costs, indicating a first-stage
effect of proximity on education.

- But proximity reflects a neighborhood’s socioeconomic status,
likely influencing earnings.

- Consequently, identifying assumptions may not hold due to
non-random instrument.

- Control for covariates (e.g., parent’s education) affecting both Z
and Y to make identifying assumptions more credible.

6.2 IV with Covariates
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Identifying Assumptions

- Assumptions for identifying the LATE conditional on covariates X
(Abadie, 2003):

{D(2),Y(Z, d)}LZ|X for 2,7, d € {0,1}, Pr(Y(1,d) = Y(0,d) = Y(d)|]X) =1,
Pr(D(1) = D(0)|X) =1, E[D|Z=1,X] — E[D|Z = 0,X] # 0,
X(1)=X(O0)=X, 0<PZ=1X) <1 (6.5)

- First line in equation (6.5) requires the IV validity assumptions of
equation (6.) to hold conditional on X.

- Second line in equation (6.5) rules out the existence defiers and
requires the existence of compliers conditional on X.

- Third line, first expression in equation (6.5) requires that the
treatment D does not affect X.

- Third line, second expression in equation (6.5) assumes common
support in the instrument propensity score P(Z = 1|X).
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Graphical Illustration

Figure 2: An instrumental variable framework with covariates.

- Unobservables U may affect X, or vice versa.
- Conditional on X, no unobservables jointly affect Zand Y.
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LATE with Covariates (1)

LATE is identified based on the ratio of the ITT and first-stage effects:

A B E[E[Y|1Z =1,X] — E[V|Z = 0,X]]

P(=1DO=0 = F[E[D|Z = 1,X] — E[D|Z = 0, X]]
_EY-Z/Pr(Z=1X)-Y-(1-2)/(1 =Pr(Z=1X))] 0
TED-Z/Pr(Z=1X)—-D-(1=2)/(0=PrZ=1X))]  ~

- Estimation may be based on matching (Frolich, 2007),
conditional mean regression, IPW (Donald, Hsu, and Lieli, 2014),
or DR (Tan, 2006) and is v/n-consistent and asymptotically
normal under certain regularity conditions.

- CML/DML for LATE estimation (Belloni, Chernozhukov,
Fernandez-Val, and Hansen, 2017) or investigating effect
hetorgeneity (Athey, Tibshirani, and Wager, 2019).

- Frolich and Melly (2013) propose an estimator of local quantile
treatment effects (LQTESs).

(6.7)
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External Validity (1)

External validity

External validity refers to how representative a causal effect (such
as the LATE) is for effects in other populations. In other words, it
concerns the generalizability of the effect to other populations.

- Limitations of LATE: The LATE among compliers may be of little
relevance because it only refers to the subpopulation of
compliers.

- ATE in the total population is typically more interesting.

- Based on covariate information, one might attempt to generalize
from the effect among compliers to draw conclusions about the
effect in the full population.
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External Validity (2)

Verifying covariate distributions

- One approach to evaluating the plausibility of external validity
consists in comparing the distribution of covariates among
compliers with that of the total population.

- To this end, the k-weighting approach of Abadie (2003) for the
identification of complier-related statistics can be applied:

D-(1-2) (1-D)-Z

C1=Pr(Z=1X)  Pr(Z=1X)

- For instance, EE[‘;]X] = E[X | D(1) = 1,D(0) = 0] gives the covariate
means among compliers.

- Similar covariates may increase confidence that effects among
compliers might be comparable to effects in total population.

- However, treatment effects might also vary with unobserved
factors not included in X.

B =1 (6.8)

5.1 Local Average Tr e ec 6.2 IV with Covariates 6.3 Nonbinary Instruments & | 1 f ion
000000000000 0O00000e000 0000000000



External Validity (3)

Homogeneity in effects

- Another approach consists in assuming homogeneous average
effects across compliance types conditional on X, see see Angrist
and Fernandez-val (2010) and Aronow and Carnegie (2013):

E[Y(1) — Y(0)[D(1), D(0), X] = E[Y(1) — Y(0)IX]. (6.9)

- Assumptions in equation (6.5) and (6.9) permit identifying ATE:

E[Y|Z =1,X] — E[Y|Z = 0,X]
EDZ=1,X—EDIZ=0,X]| "

A = E[Ap)=1,000)=0x] = E (610)

- In the presence of multiple instruments, conditional effect
homogeneity is testable.
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External Validity (4)

Homogeneity in potential outcomes

- Further assumption establishing external validity of the LATE:
different compliance types have the same mean potential
outcomes, at least conditional on X, see Angrist (2004) and de
Luna and Johansson (2014).

- This resembles a selection-on-observables assumption for the
treatment.

- A statistically significant association of Zand Y, conditional on D
and X, suggests a violation of homogeneous potential outcomes.

- Donald, Hsu & Lieli (2014) suggest a related test of whether the
IV-based LATE differs from the selection-on-observables-based
ATET (see chapter 4) under one-sided noncompliance, ruling out
always takers and defiers.
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External Validity (5)

Rank invariance or similarity, see Chernozhukov and Hansen (2005)

- Assumption: rank(Y(1)) = rank(Y(0)) (rank invariance), or at
least no systematic differences (rank similarity).

- Permits identifying quantile and average treatment effects on
continuous outcomes in the total population, even without
imposing monotonicity.

- However, such assumptions substantially restrict treatment
effect heterogeneity.

- Example: Consider education choice (college vs. vocational
training) as treatment. Rank invariance implies that a college
graduate would have the same rank in the wage distribution
under vocational training.

- This may be unrealistic if individuals are systematically more
competitive in one track than in the other.
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Multivalued or Continuous Instrumental Variables

- Consider multivalued instead of binary instrument, while
treatment remains binary.

- Multivalued instruments may possibly be continuous.

- We may asses the LATE for any pair of instrument values 7z and z
(which might be different from 0 and 1) that satisfy the IV
assumptions.

- For example, consider a medical treatment instrumented by
randomized cash incentives with values 7z’ (e.g. 20 USD) and z (10
usD).
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Propensity Score-Based Approach

- Instead of directly using instrument Z, we may alternatively
consider the treatment propensity score as instrument, defined
as p(Z,X) = Pr(D =1|Z,X).

- Using the propensity score approach, the LATE is identified by:

A _ EEMP(Z.X) = p(2, %), X] = E[YIP(Z.X) = p@ X, X] (6 10)
PMO=1PO=0 = EFEDIp(Z,X) = p(z/,X),X] — EIDIp(Z,X) = p, X), Xl

6.3 Nonbinary Instruments & Treatments
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Propensity Score with Multiple Instruments

- Propensity score-based approach appears attractive if Z consists
of multiple instruments (e.g., cash transfers and geographic
proximity), which are collapsed into a single score p(Z, X).

- However, monotonicity and common support must hold for the
newly created instrument p(Z, X), not just one instrument.

- Problem in terms of monotonicity: rules out cases where
subjects comply with only one instrument.

- Mogstad, Torgovitsky, and Walters (2020) propose and discuss

identification under weaker partial monotonicity, i.e,,
monotonicity in one instrument conditional on the other.
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Continuous Instrument and Marginal Treatment Effect

- Marginal change in a continuous instrument yields the marginal
treatment effect (MTE) (Heckman and Vytlacil, 1999, 2001, 2005).

- MTE is the average treatment effect conditional on the covariates
X and unobserved term V affecting treatment decision:

Axy = E[Y(1) = Y(O)[X = x,V = V]. (612)

- MTE in equation (6.12) can be estimated by the local IV (LIV):

. _ OE[YIX = x,p(Z,X) = p(z,X)]
X=x,V=p(z,x) = op(z,x) '

(613)

- MTEs are identified under the assumptions in equation (6.5).

- Very strong, continuous instruments allow assessing MTEs for all
feasible values of X and V (yielding the ATE), but are hard to find.

- Consequently, MTE is generally only identified over the common
support of p(Z,X) across all values of X.

28
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Graphical Illustration

MTE at mean X

T T
0.2 0.4 0.6 0.8
p (Z, mean X)

Figure 3: MTEs

63 Nonbinary Instruments & Treatments
0000080000




Identifying the ATE Despite Limited Common Support

Despite common support issues one might identify the ATE:

- By replacing the independence assumption {D(z), Y(Z',d)} LZ|X
by a much stronger version (Carneiro, Heckman, and Vytlacil,
2011):

{D(2),Y(Z,d)}L(Z,X) for z,Z in the support of Z, (6.14)

and thus imposing independence between X and U.
- By imposing parametric assumptions like a linear change of the
MTE across values of p(Z, X) (Brinch, Mogstad, and Wiswall, 2017).

- By imposing additive separability in treatment effect
heterogeneity caused by covariates X on the one hand and
unobserved characteristics on the other hand.
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Multivalued Treatments

- Consider an ordered treatment with multiple values
D €{0,1,2,...,J}, while maintaining a binary instrument.

- Evaluating the effects among complier groups at specific
treatment values is not straightforward.

- However, if Pr(D(1) > j > D(0)) > 0 for some treatment value j
such that compliers exist at some treatment margin, then the
Wald estimand equals (Angrist and Imbens, 1995):

E[Y|Z = 1] — E[¥|Z = 0]
E[DIZ=1] — E[DIZ = 0] wa EY() = YU = DIP() 2> D(O)] - (635)
with weights w; = M implying that 0 < w; < 1and

>2I_, Pr(D(1)>)>D(0))’
j LW =1
. The compher groups contributing to the weighted effect might
be overlapping and some compliers might be accounted for

multiple times, comprom|smg interpretability.
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Binarized Treatments

- Temptation with a multivalued treatment: reduce it to a binary
treatment (e.g., high vs. low training; tertiary vs. no tertiary
education).

- However, binarization violates the IV exclusion restriction if the
instrument affects the treatment at margins not captured by the
binarized treatment (Andresen and Huber, 2021).

- Example: Instrument affects the decision of upper vs. lower
secondary education, while the binarized treatment captures
tertiary vs. no tertiary education.
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Unordered Treatments

- Unordered treatments are equivalent to multiple mutually
exclusive options (e.g., D = 1: IT course, D = 2: sales training).

- They pose challenges to (the credibility of) monotonicity
assumptions.

- Behaghel, Crépon, and Gurgand (2013) consider three-valued
(D,2) € {0,1,2} and consider the following monotonicity
assumption:

- Z:0 — 1affects choice 1vs. 0, not 2.
- 7:0 — 2 affects choice 2 vs. 0, not 1.

- Heckman and Pinto (2018) assume that if some move into (out
of) a treatment when Z changes, no one moves out of (into) it
simultaneously.

- These examples demonstrate that monotonicity conditions with
multiple unordered treatments are more complex than in the
binary case.
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Nonrandom Outcome Attrition and Sample Selection

Related to chapter 4.11, nonrandom outcome attrition and sample
selection can complicate treatment evaluation:

- Nonrandom outcome attrition, e.g., nonresponses in follow-up
survey in which the outcome is measured.

- Sample selection, e.g, when wage outcomes are only observed
conditional on selection into employment.

Impose further assumptions to tackle this issue:

- Missing-at-random (MAR): Conditional independence of the
attrition or sample selection and Y, given Z, D, and X.

- Latent ignorability (LI; Frangakis and Rubin, 1999): Conditional
independence given compliance type (complier, always, or never
taker).

- Combination of MAR and LI: Conditional independence given

_both observed charactens‘ucs and‘the compl |ance typ
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IV Approach with Attrition and Sample Selection

- Nonignorable nonresponse or Heckman-type sample selection
models allow for more general association of attrition or sample
selection (denoted by O) and unobservables affecting the
outcome than LI (and its combination with MAR).

- But they generally require an additional instrument (denoted by
Q) for O which does not affect the outcome Y.

- LATE evaluation requires further assumptions like parametric
restrictions on the outcome model, specific (e.g., monotonicity)
conditions concerning the effect of instrument Q, or both.

- For instance, Fricke, Frolich, Huber, and Lechner (2020) consider
a continuous instrument Q for sample selection/attrition O, in
addition to the binary instrument Z for treatment D.

36
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Graphical Illustration

Figure 4: Causal paths with two separate instruments for the treatment and
attrition.
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IV Approach with Multiple Treatments

- As in chapter 4.9, consider evaluating the impact of several
sequentially assigned treatments.

- This generally requires multiple instruments for each treatment
and further assumptions.

- In a multiple treatment framework, the different treatments are
not assigned sequentially, but in the same period.

- ldentification generally requires different instruments for each
treatment, too (Blackwell, 2015) .

- As in chapter 410, consider disentangling the direct effect and
indirect effect (through a mediator) of a treatment on an
outcome.

- ldentification in general requires distinct instruments for the
treatment and the mediator (Frolich and Huber, 2017), along with
further assumptions.

38
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