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Effect Heterogeneity with CML

Effect Heterogeneity

Effect heterogeneity refers to differences in causal effects across
subgroups, e.g. based on observed characteristics (covariates X),
such as gender, age, and income.

Exploring effect heterogeneity in multiple subgroups is not
straightforward due to multiple hypothesis testing:

- Conventional t-statistics and related p-values are only valid for
testing a single hypothesis, and would need to be adjusted for
multiple hypothesis testing.

- CML approaches can be applied for investigating effect
heterogeneity across X in a way that avoids inferential issues of
multiple hypothesis testing.
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Effect Heterogeneity with Causal Trees

Causal trees (Athey and Imbens, 2016) permit studying effect
heterogeneity. With random treatment D, decision trees for
prediction must be modified in two ways:

1. Instead of Y, the difference in Y across treatment groups serves
as the outcome to be predicted, when recursively splitting the
covariate space into subgroups.

— Maximize effect homogeneity within subgroups and effect
heterogeneity across subgroups.

2. Apply sample splitting, such that the tree’s structure and
treatment effect estimation is based on distinct parts (or folds)
of the data.

— Avoid spuriously large effect heterogeneities due to
overfitting.
5
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Effect Heterogeneity with Causal Random Forests (1)

Causal random forests (Wagner and Athey, 2018; Athey, Tibshirani,
and Wager, 2019) combine sample splitting and partialling out to
control for confounders with causal tree approach for finding effect
heterogeneity:

1. Predict both Y and D as a function of X using random forests and
leave-one-out cross-validation.

2. Compute residuals of Y and D using the predictions, which
corresponds to the partialling out strategy.

3. Predict heterogeneous effects of the residuals of D on the
residuals of Y as a function of X using a causal random forest,
obtained by averaging across many causal trees.

5
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Effect Heterogeneity with Causal Random Forests (2)

Causal trees vs. causal forests:

- Causal trees provide easy-to-interpret splitting rules for defining
subgroups, but tend to have higher variance.

- Causal forests reduce variance by averaging across many trees,
but lack straightforward guidance for defining subgroups.

Assessing effect heterogeneity:

- Causal forest yields an estimate of the conditional average
treatment effect (CATE), Ax = E[Y(1) — Y(0)|X = x], such that we
can investigate the CATE as a function of X.

6
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Conditional Average Treatment Effects
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Figure 1; CATE distribution.




Causal Forests with Continuous Treatments

- Causal forests can be applied to continuous treatments.

- This approach yields the conditional average partial effect
(CAPE) of marginally increasing the current treatment intensity
given x, instead of the CATE.

- Formally, the CAPE is the average derivative of the conditional
mean of Y with respect to D, taken over the distribution of D
given X = x:

A {aE[v(D)xX] )X_X] . {agm D,X = X] ‘X:X

oD aD } - (@)
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Effect Heterogeneity with Double Machine Learning (1)

Double machine learning approach to effect heterogeneity:

- Use machine learning-based estimate of the influence function
#(X) in equation (4.45).

- (Unconditional) average treatment effect (ATE) is given by E[#(X)].

- CATE is given by E[¢(X)|X = X].

- Regress @(X) on covariates X or a subset of the covariates to
explore effect heterogeneity.

9
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Effect Heterogeneity with Double Machine Learning (2)

Semenova and Chernozhukov (2021):

-+ OLS regression of ng)(X) on a limited number of preselected
covariates can, under certain conditions, yield asymptotically
correct coefficient estimates and standard errors for testing
effect heterogeneity.

- Two conditions must be met:

1. $(X) is estimated by cross-fitting (i.e,, in a different part (or fold) of

the data than the plug-in parameters).

2. The convergence rate of the plug-in parameters is faster than
n="%,

When assessing effect heterogeneity across continuously distributed
covariates (such as income), non-linear methods such as
nonparametric kernel or series regression can be considered.

10
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Effect Heterogeneity with Double Machine Learning (3)

Detect covariates that most importantly predict effect heterogeneity
in a data-driven way:

- Predict ¢(X) as a function of X and assess which covariates X are
most predictive (e.g, based on lasso regression).

- Most predictive covariates could be strongly correlated with
other covariates, which rank lower in terms of predictive power
but are not necessarily unimportant in terms of influencing
effect heterogeneity.

- Under data-driven covariate selection for effect herogeneity
analysis, statistical inference generally requires further sample
splitting steps, in order to avoid overfitting.

- Use different data folds (1) for selecting predictive covariates
and (2) for statistical inference (assessing whether the selected
covariates statistically significantly drive effect heterogeneity).

1
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Effect Heterogeneity with Double Machine Learning (4)

For optimal DML-based estimation of the CATE with the smallest
possible bound on the estimation error, cross-fitting approach can
be further refined, see Kennedy (2020):

1. Estimate propensity scores in the first fold.
2. Estimate conditional mean outcomes in the second fold.

3. Estimate the efficient influence function and CATE in the third
fold.

4. Swap the roles of the folds to obtain the final CATE estimates by
averaging over the CATE estimates in the various folds.

Repeat random data-splitting into three folds multiple times
and take the median CATE estimate to further reduce variance.

12
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Optimal Policy Learning

Optimal policy learning, as discussed e.g. in Manski (2004), Hirano
and Porter (2009), and Kitagawa and Tetenov (2018), is related to
effect heterogeneity:

- Optimal allocation of a treatment in a population as a function
of covariates X when also considering costs of treatment.

Example

- Optimal price discount targeting: Only offer price discount to
customers if benefits (e.g, additional sales) outweigh costs (e.g.,
reduced profit margin) given customers’ characteristics X.
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- Consider maximizing average outcomes under a binary
treatment based on covariate-dependent treatment assignment.

- w(X) is a treatment policy defined as a function of X.
- For example, m(X) = I{age > 65} could indicate that a medical

treatment is assigned to individuals who are 65 years old and
older, such that w(age = 30) = 0 and w(age = 70) = 1.

16
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Optimal Policy

- A(w(X)) is the average effect of policy w(X), which is defined as
the difference in mean potential outcomes under 7(X) versus
nontreatment of everyone:

A(r(X)) = EV(r(X)) - Y(0)] = E[x(X) - (¥(1) - ¥(0))]
= Elr(X) - EY() — YOI = Elr(0) - A (59)

- The optimal policy 7*(X) maximizes the average effect among
the set of feasible policies:

7 (X) = max A(m(X)), (510)

mel

where I denotes a finite (e.g., countable) set of feasible policies.
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Regret Function

- Based on equation (5.09) and (5.10), we can define a regret
function:

R(x(X)) = A(r* (X)) — A(x(X)), (511)

corresponding to the reduction in average policy effect A(w(X))
due to implementing a suboptimal policy =(X) instead of the
optimal policy 7*(X).

- Therefore, finding the optimal policy among the set of feasible
policies implies that the average policy effect is maximized and
regret R is equal to zero.
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Optimal Policy with DML (1)

- Solving the optimization problem in equation (510) to learn the
optimal policy is equivalent to solving the following
maximization problem:

T (X) = max E[2m(X) — 1) - &(X)], (512)
S
where ¢(X) is the efficient influence function from equation
(4.45).

- Term (27(X) — 1) implies that the CATEs of treated and
nontreated individuals enter the expectation positively and
negatively, respectively.

- Maximizing the expectation thus requires a trade-off between
treated and nontreated individuals according to their CATEs,
when choosing the optimal policy among the feasible policies.

19
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Optimal Policy with DML (2)

- When applying optimal policy learning based on DML, the upper
bound (or worst case value) of the regret function,

R(#*(X)) = A(r™ (X)) — A(7" (X)),

can go to zero at /n-rate under certain conditions.
- As shown in Athey and Wager (2021), this is the case if:
1. Plug-in parameters are estimated at a convergence rate faster
than n="/*.
2. Set of possible policies M is not too complex (satisfied in a policy
tree with a moderate number of subsets).

20

5 ec ogeneit 5.5 Optimal Policy Learning 5 Reinforcem earnin
00000000000 000000080 000000000000



Incorporating Treatment Costs

- Until now, we did not explicitly consider treatment costs.
- But costs are relevant because:
1. A policy should only be implemented if it outweighs the costs.
2. Costs might vary across policy rules as a function of covariates X.
- Denote the treatment costs of policy w(X) as C(w (X)), which
might vary with the values of X.
- We modify the average effect of policy A(w(X)) in equation (5.9)
such that it accounts for treatment costs:

A(w(X)) = E[x(X) - Ax — C(w(X))], (513)
which corresponds to the policy’s net effect rather than its gross

effect.
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Reinforcement Learning

Reinforcement learning:

- Machine-learning based method for learning optimal treatment
policies.

- Treatment assignment is dynamic across time periods in this
approach.

- Aims at learning most effective treatment by repeated
assignment of multiple treatments and their evaluation across
time periods (Sutton and Barto, 1998).

23
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- Treatment D; and outcome Y; in period T = t, with
te{1,2,...,7T}and T denoting the total number of periods.

- D¢ may take values d; € {0,1,...,J}, where 0 indicates no
treatmant and 1,...,J index different nonzero treatments.

- Mean potential outcome of treatment d in period t:
pe(de) = E[Ye(de)|T = 1]

- Average of the mean potential outcomes for a fixed treatment
d=dy=---=dy across all treatment periods: u(d) = E[Y(d)].

24
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Homogeneity Assumptions

Two assumptions rule out that treatment effects interact with the
time periods:

- Assume that treatments only affect outcomes in the same period
t, which implies that there are no dynamic treatment effects.

- Assume that ATEs are stationary, i.e., treatment effects do not
change over time.

These homogeneity assumptions imply that u:(d:) = pr(dw), for two
time periods t # t/, and that p(d;) = u(d).

25
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Optimal Treatment and Regret Function

- Assuming homogeneous ATEs across time, we aim to find the
treatment that maximizes u(d), denoted by
d* = maxgeqon,... .3 #(d).

- Related to optimal policy learning in chapter 5.4, we define a
regret function Ry (d).

- The regret function is the difference in mean potential outcomes
under the optimal treatment d* versus another treatment d,
summed over all periods T

Zu e (534)
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Exploration-Exploitation Trade-off

Reinforcement learning faces a trade-off:

- On the one hand, continuing learning (exploration) over more
time periods (and thus, data) increases the chance of finding the
optimal treatment.

- On the other hand, this decreases the number of individuals to
which the currently optimal treatment can be assigned
(exploitation).

- If too few periods are used for exploration, we may end up with
a suboptimal treatment choice.

- If too many periods are used, we increase regret by not
assigning everyone to the optimal treatment.

— Reinforcement learning must balance exploration and
exploitation to minimize regret.
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Adaptive Randomization

- Let us consider random treatment assignment under
assumptions stated in expression (3.53) in chapter 3.

- Random assignment with equal probability in all periods is
suboptimal for balancing exploration and exploitation.

- Use adaptive randomization (e.g., Thompson sampling) instead
to gradually assign more individuals to better-performing
treatments:

- Start with a prior distribution for the potential outcomes of each
treatment.

- Randomly assign treatments based on the likelihood that they are
optimal.

- Update the posterior distribution based on the effects found in
each newly run experiment.

28
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Thompson Sampling

Thompson sampling (Thompson, 1933):

- Based on Bayesian updating to modify treatment assignment as
more information on treatment effectiveness becomes available.

- Starts with a prior distribution ?y(d)o for potential outcomes
under each treatment d in the nonobserved period t = 0.

- Neutral or uninformative prior: assuming a constant mean across
potential outcome distributions of any treatment, in line with a
null hypothesis of zero ATE for any treatment.

- Uses probability matching to base treatment assignment on the
likelihood that a specific treatment is optimal, according to
effects in past data and the prior distribution.

- Continues to explore possibly optimal treatments while
gradually shifting away from underperforming treatments.

- Can attain a near-optimal regret bound.

29
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Thompson Sampling Steps

Thompson sampling steps:

- Compute probabilities: Calculate py¢—1, the probability that
treatment d is optimal, based on its performance in previous
periods. In the first period t = 0, this is based on the prior
distribution.

- Random treatment assignment: Draw treatments D; from a
multinomial distribution in which treatment assignment
probabilities correspond to their probabilities to be optimal,
f)d,tf%

- Bayesian updating: Assess outcomes Y; to update the posterior
distribution ?y(,)“ which will serve as the prior for the next
period t + 1.

30

5.6 Reinforcement Learning

t 50p al Po ear
000000000 000000008000

> (e ogen
00000000000



Time-Varying Effects

Possible approaches to adapt Thompson sampling to time-varying
effects (nonstationary p(d)):

- Discard observations beyond a specific number of periods in the
past to focus on more recent data.

- Introduce a discount factor to reduce the weight of older
periods.

3
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Inference

Due to the adaptive randomization and the time-dependence it
introduces:

- The assumption of independent and identically distributed data
is violated.

- Conventional t-statistics do not yield valid p-values and
confidence intervals.

Apply adaptively weighted estimators for inference such as
IPW-based estimation (Hadad et al,, 2021):

T o T _
=Y AR/ IS )

t=1

which satisfies asymptotic normality.
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Heterogeneous Treatment Effects

To account for/explore heterogeneity in treatment effects, apply
reinforcement learning within subsets of data defined by covariates
X (Caria et al., 2020):

- More subsets enable better-tailored treatments for specific
subpopulations.

- However, more subsets also imply a longer exploration period
due to smaller sample sizes within each subset.

- This creates a trade-off between optimal treatment specificity
and exploration duration.
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