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Motivation of Variance Estimation

• Even if unbiasedness and consistency hold, the estimate of the
ATE in a sample typically differs from the true ATE in the
population.

• This is due to the variance of the ATE estimates across samples.
• Knowing the variance and distribution is useful for quantifying
the precision with which the true ATE is estimated in a sample.

• This permits, for instance, answering the following questions
relevant to statistical inference:

• With which error probability can we rule out that the ATE is equal
to zero in the population, given the ATE estimate in our sample?

• What is the range or interval of values that likely includes the ATE
in the population, given the findings in our sample?
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Estimating the Variance of β̂

• Directly using Var(β̂) = E[ε2·(D−E[D])2]
n·(Var(D))2 is infeasible, as it contains

(unobserved) population parameters, such as E[D] and ε.
• However, we may estimate these parameters in the sample.
• The residual ε̂i is the estimate of the true error term εi:

ε̂i = Yi − (α̂+ β̂Di)︸ ︷︷ ︸
Ê[Yi|Di]

(3.35)

• ε̂i: Difference between observation i’s outcome and the conditional
sample average of the outcome given the treatment (Ê[Y|Di]).

• Prediction Ê[Y|Di] is an estimate of E[Y|D = Di] in the population.

• The variance estimator corresponds to:

V̂ar(β̂) =
1
n
∑n

i=1 ε̂
2
i · (Di − D̄)2

n · (V̂ar(Di))2
(3.36)

• E[D] has been replaced by the sample mean D̄. 4
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Hypothesis Testing (1)

Hypothesis testing
Assesses whether the true ATE in the population is likely different,
smaller, or larger than a specific value, given β̂ and Var(β̂).

• Reconsider the asymptotically normal distribution of β̂:

β̂ →d N(β, Var(β̂)),with Var(β̂) = E[ε2 · (D− E[D])2]
n · (Var(D))2

• Normalize this to obtain a standard normal distribution:

β̂ →d N(β, Var(β̂)),

⇔ β̂ − β

sd(β̂)
→d N(0, 1) (3.37)

with sd(β̂) =

√
E[ε2 · (D− E[D])2]
n · (Var(D))2 (3.38)
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Hypothesis Testing (2)

• In large enough samples, the z-statistic β̂−β

sd(β̂) closely follows a
standard normal distribution.

• This result can be used for checking the plausibility of
hypothesized values of β.

• To test whether a treatment has an effect, use:

H0 : β = 0, H1 : β ̸= 0 (3.39)

• Null hypothesis H0: The treatment has no effect.
• Alternative hypothesis H1: The ATE is different to zero.

• If H0 : β = 0, the z-statistic simplifies to β̂

sd(β̂) .

• β̂

sd(β̂) measures the size of the estimated ATE β̂ normalized by
the standard deviation sd(β̂) as unit of estimation uncertainty.

• Permits assessing how likely it is that the ATE in the population
is different from zero, given the value of β̂

sd(β̂) in the sample. 6
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Hypothesis Testing (3)

• If the true ATE in the population is zero, the probability of
observing a value of

∣∣∣ β̂

sd(β̂)

∣∣∣ > 1.96 in a sample is just 5%:

• The probability of obtaining β̂

sd(β̂) > 1.96 is 2.5%.

• The probability of obtaining β̂

sd(β̂) < −1.96 is also 2.5%.

• Thus, if such an extreme value is observed, H0 : β = 0 is rejected
(and H1 : β ̸= 0 is accepted) with an error probability below 5%.

• This error probability describes the probability of incorrectly
rejecting H0 (type I error).

• The lower the error probability is, the more confident we are in
rejecting H0.

• A maximum admissible error probability for rejecting H0, such as
5%, is conventionally predefined.
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Hypothesis Testing (4)

Figure 3.2: Standard normal distribution
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Hypothesis Testing (5)

• The asymptotic standard deviation sd(β̂) is typically unknown,
as it relies on population parameters, such as E[D] and ε.

• Therefore, sd(β̂) is replaced with an estimate obtained in the
sample, the standard error se(β̂):

se(β̂) =

√
1
n
∑n

i=1 ε̂
2
i · (Di − D̄)2

n · (V̂ar(Di))2
(3.40)

• Replacing sd(β̂) with se(β̂) yields the t-statistic which converges
to a standard normal distribution as the sample size n increases:

β̂ − β

se(β̂)
→d N(0, 1) (3.41)

• Note that in smaller samples, the t-statistic follows a t-distribution.
• The t-distribution converges to a normal one as n increases.
• For samples with n ≥ 120, a t-distribution is practically
indistinguishable from a normal distribution. 9
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Hypothesis Testing (6)

• Under H0 : β = 0, the t-statistic simplifies to: β̂

se(β̂)
• The type I error probability associated with ATE estimate β̂ is the
probability of values that are at least as large as the t-statistic.

• This error probability of incorrectly rejecting the null hypothesis
based on the estimate in the sample - i.e., the significance level
implied by using

∣∣∣ β̂

se(β̂)

∣∣∣ as threshold value - is the p-value:
p-value = Pr

(
|A| ≥

∣∣∣∣∣ β̂ − β

se(β̂)

∣∣∣∣∣
)
, (3.42)

where A denotes a random variable following a t-distribution.

p-value
Is the probability of observing a test statistic at least as extreme as
the value

∣∣∣ β̂

se(β̂)

∣∣∣ observed in the sample under the satisfaction of
the null hypothesis β = 0. 10
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Hypothesis Testing (7)

Comments on hypothesis testing

• Hypothesis testing can only reject the validity of a null
hypothesis, but never confirm it.

• Nonrejection of a null hypothesis means we cannot rule out its
correctness based on the data, not that it is definitively correct.
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Procedure for Hypothesis Testing

1. Define the null and alternative hypotheses H0 and H1
• To test the presence of an ATE: H0 : β = 0, H1 : β ̸= 0.
• To test if β differs from another value, e.g., 1: H0 : β = 1, H1 : β ̸= 1.

2. Set the significance level α
• α is the maximally accepted type I error probability of incorrectly rejecting H0 .
• Typical values: α = 0.05 (5%), 0.01 (1%), or 0.1 (10%).

3. Compute the critical value c
• c is the value in the standard normal or t-distribution that corresponds to α.
• For α = 0.05, c = 1.96 in a standard normal distribution.

4. Evaluate the t-statistic and statistical significance

• Reject H0 if
∣∣∣ β̂−β

se(β̂)

∣∣∣ ≥ c or if the p-value ≤ α; otherwise, keep H0 .

• If H0 is rejected, β̂ is statistically significantly different from the β hypothesized
under H0 at the α level of significance.
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One-Sided Hypothesis Testing (1)

Right-tailed hypothesis test

• Tests whether the ATE estimated in the sample is statistically
significantly larger than zero (or another value of interest):

H0 : β ≤ 0, H1 : β > 0 (3.43)

• The p-value corresponds to:

p-value = Pr

(
A ≥ β̂ − β

se(β̂)

)
(3.44)

• The condition for a rejection of the null hypothesis is:

β̂ − β

se(β̂)
≥ c, where c is a suitable threshold value for one-sided tests,

e.g., c = 1.64 for α = 0.05

• An equivalent condition is p-value ≤ α.
13
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One-Sided Hypothesis Testing (2)

Left-tailed hypothesis test

• Tests whether the ATE estimated in the sample is statistically
significantly smaller than zero (or another value of interest):

H0 : β ≥ 0, H1 : β < 0 (3.45)

• The p-value corresponds to:

p-value = Pr

(
A ≤ β̂ − β

se(β̂)

)
(3.46)

• The condition for a rejection of the null hypothesis is:

β̂ − β

se(β̂)
≤ c, where c is a suitable threshold value for one-sided tests,

e.g., c = 1.64 for α = 0.05

• An equivalent condition is p-value ≤ α.
14
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Confidence Intervals

Confidence interval (CI)
Provides a range of ATE values such that the true ATE β is included
with probability/proportion 1−α, when constructing CIs in
(infinitely) many samples.

• The confidence interval is constructed as follows:

CI =[β, β̄], with
β =β̂ − c · se(β̂), β̄ = β̂ + c · se(β̂) (3.47)

• β and β̄ denote the lower and upper bound of the CI.
• c is the critical value of a two-sided hypothesis test.

• For α = 0.05 (and thus c = 1.96), the CI includes the true β with
95% probability.

• Whenever β̂ is not statistically significantly different from zero,
the corresponding CI includes the zero. 15
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Introduction to Bootstrapping

Bootstrapping (Efron, 1979)
Repeatedly draw samples of n observations from the original data
(with replacement) to compute p-values, confidence intervals etc.

• Bootstrapping is an alternative method for computing standard
errors that does not rely on the asymptotic formula (3.40).

• Drawing observations with replacement implies that some
subjects may appear several times or not at all.

• For this reason, bootstrap samples differ from the original data
and one another; however, they match the data on average.

• This mimics the fact that the original data is a random sample
from the population and a new sample may differ from it.

• Therefore, this quite cleverly approximates the approach of
randomly drawing many samples from the population.

16
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Bootstrapping Procedure

Figure 3.3: Bootstrapping
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• Generate bootstrap samples, reestimate the ATE in each of them
and then use these estimates to calculate the standard error.
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Bootstrap-Based Standard Error

• The standard error is computed as the standard deviation of the
ATE estimates across all bootstrap samples:

se(β̂) =

√√√√ 1
B− 1

B∑
b=1

(
β̂b − 1

B

B∑
b=1

β̂b

)2

(3.48)

• B is the number of bootstrap samples (B should ideally be large,
preferably B > 999).

• b is the index of a specific bootstrap sample with b ∈ {1, 2, . . . ,B}.
• β̂b is the ATE estimate in the bootstrap sample b.

• The bootstrap-based standard error can then be used in the
t-statistic (equation (3.41)) to proceed with statistical inference.
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Bootstrap-Based p-Value

• An alternative bootstrap approach is to directly compute the
p-value without using the t-statistic.

• For a two-sided hypothesis test, the p-value can be calculated
by counting how often |β̂b − β̂| is larger than |β̂|:

p-value =
1
B

B∑
b=1

I{|β̂b − β̂| > |β̂|} (3.49)

• I{|β̂b − β̂| > |β̂|} is an indicator function that is equal to 1
whenever |β̂b − β̂| > |β̂| holds and zero otherwise.

• The distribution of β̂b − β̂ has a mean of zero, which mimics the
distribution under the null hypothesis of no effect.

• If β̂ appears rather extreme compared to this distribution, the
null hypothesis is rejected.

19
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Goodness of Fit and R2 (1)

• Goodness of Fit: Assessing the relative importance of the
treatment in explaining the outcome compared to other
characteristics.

• The outcome Yi can be decomposed into two components:

Yi = Ê[Yi|Di] + ε̂i (3.50)

• Prediction Ê[Yi|Di]: The part of the outcome explained by the
treatment.

• Residual ε̂i: The part of the outcome explained by other (possibly
unobserved) characteristics.

• The variance of Yi is the sum of the variances of these
components:

Var(Yi) = Var(Ê[Yi|Di]) + Var(ε̂i) (3.51)20
3.4 Variance Estimation, Inference, and Goodness of Fit 3.5 Multiple or Continuous Treatments 3.6 Including Covariates



Goodness of Fit and R2 (2)

• The variances of the parts of the outcome explained by the
treatment and the residuals sum to 1:

1 = Var(Ê[Yi|Di])
Var(Yi)︸ ︷︷ ︸

R2

+
Var(ε̂i)
Var(Yi)

(3.52)

• The goodness of fit (R2) can be judged by the share in the
variation of Yi caused by the treatment.

• Interpretation:
• R2 close to 1: Treatment causes most of the variation in Yi.
• R2 close to 0: Other characteristics cause most of the variation in Yi.

• R2 is different from the magnitude of the ATE:
• A treatment may have a large ATE but still explain only little of the
variation in the outcome relative to other characteristics.

21
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Discrete Treatments (1)

• So far, the discussion has focused on binary treatments (0 or 1).
• In many empirical applications, however, the interest lies in the
effects of several, potentially competing treatments.

• First, consider treatments that are discrete, i.e., can take only a
limited number of different values.

• Formally, a treatment can take values D ∈ {0, 1, 2, . . . , J}, where J
denotes the number of treatments.

• Covers both ordered (e.g., 1 week vs. 2 weeks of training) and
unordered treatments (e.g., IT course vs. sales training).

• If nontreatment and all the various treatments 1, . . . , J are
randomized, the independence assumption extends to:

{Y(0), Y(1), Y(2), . . . , Y( J)}⊥D (3.53)
23
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Discrete Treatments (2)

• To analyze the ATEs for each nonzero treatment, create binary
variables: D1 = I{D = 1}, D2 = I{D = 2}, . . . , DJ = I{D = J}.

• The regression model in the population is:

E[Y|D] = α︸︷︷︸
E[Y|D=0]

+ β1︸︷︷︸
E[Y|D=1]−E[Y|D=0]

D1 + β2︸︷︷︸
E[Y|D=2]−E[Y|D=0]

D2

+ · · ·+ βJ︸︷︷︸
E[Y|D=J]−E[Y|D=0]

DJ (3.54)

• β1, β2, . . . , βJ correspond to the ATEs of the various treatments vs.
no treatment, i.e., E[Y(1)− Y(0)], E[Y(2)− Y(0)], . . . , E[Y(J)− Y(0)].

• This model makes pairwise comparisons of the average
outcomes between any treatment group and the control group.

• Note that no linear relationship between Y and D is imposed.
24
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Continuous Treatments (1)

• Now consider a treatment D that is continuously distributed, i.e.,
may take infinitely many values that respect cardinality.

• The independence assumption is adapted to:

Y(d)⊥D for any value d that treatment D might take. (3.55)

• Approach one: Discretize the continuous treatment
• Generate binary indicators for specific brackets of values (e.g.,
D1 = I{D ≤ 1000}, D2 = I{1000 < D ≤ 2000},…) and use (3.54).

• Permits analyzing the ATEs of the various brackets but not the
average effect of a marginal increase in D on Y.

• Approach two: Directly include D in the linear regression

Y = α+ βD+ ε (3.56)

• Under the independence assumption, β represents the average
effect of a marginal increase in D on Y. 25
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Continuous Treatments (2)

• Denote the conditional mean of Y given a specific value d of
treatment D as µd = E[Y|D = d].

• By the independence assumption, µd = E[Y(d)], ruling out
treatment selection bias across values of d.

• ∇µd =
∂µd
∂d indicates how much E[Y(d)] changes in reaction to a

marginal change in treatment D at treatment value d.
• If Y is a linear function of D, β corresponds to the average
marginal effect:

E[∇µD] = β (3.57)

• Under certain conditions (namely if D is normally distributed),
E[∇µD] = β holds even if Y is not a linear function of D (i.e., the
marginal effect ∇µd may differ across treatment values of d).

26
3.4 Variance Estimation, Inference, and Goodness of Fit 3.5 Multiple or Continuous Treatments 3.6 Including Covariates



Continuous Treatments (3)

• In general, the marginal effect ∇µd differs from the average
marginal effect E[∇µD].

• Exception: When the marginal effect is homogeneous, so that:

∂E[Y(d′)]
∂d′ =

∂E[Y(d)]
∂d for any values d′ ̸= d that D might take. (3.58)

• Therefore, under homogeneous effects, the conditional mean
outcome E[Y|D] is truly linear in D.

• Only in this case does linear regression permit identifying the
marginal effect at d, since ∂E[Y(d)]

∂d = ∂E[Y(d′)]
∂d′ = β for any d and d′.

27
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Continuous Treatments (4)

Figure 3.4: Linear association of the outcome and treatment
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Continuous Treatments (5)

• In many empirical settings, the causal relation of the outcome Y
and a continuous treatment D might be nonlinear.

• This implies that marginal effects are heterogeneous; they differ
depending on the values of the treatment.

• To allow for nonlinearities, the regression model can be made
more flexible by including higher‐order terms of D, e.g., D2:

E[Y|D] = α︸︷︷︸
E[Y|D=0]

+ β1D+ β2D2 (3.59)

• Taking the first derivative of E[Y(d)] with respect to d yields:
∂E[Y(d)]

∂d = β1 + 2β2d (3.60)

• Thus, the marginal effect coming from the nonlinear model now
depends on the treatment value d.

29
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Continuous Treatments (6)

Figure 3.5: Nonlinear association of the outcome and treatment
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• Here, the outcome-treatment relation is even nonmonotonic. 30
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Continuous Treatments (7)

• Including additional higher-order terms (e.g., D3, D4, etc.) further
increases the model’s flexibility to incorporate nonlinearities.

• However, too many higher-order terms increase the variance of
effect estimation, particularly in small samples.

• Ideally, the optimal number of higher-order terms is chosen in a
way that minimizes the overall estimation error (MSE).

• This can be done in a data-driven way, e.g., based on
cross-validation (Stone, 1974).

• For continuous treatments, nonparametric methods (e.g., series
or kernel regression) offer a flexible alternative to linear
regression.

• Increased flexibility comes at the cost of a higher variance.
• In large samples, the gain in flexibility from nonparametric
approaches often outweighs this increase in variance.

31
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Why Control for Covariates?

• Under the independence assumption {Y(1), Y(0)}⊥D, treated and
control groups are comparable in background characteristics.

• Therefore, observed characteristics are not needed to obtain an
unbiased and consistent ATE estimate.

• Nevertheless, controlling for such covariates X = (X1, X2, . . . , XK)
can reduce the variance of treatment effect evaluation.

• Since covariates are measured prior to treatment, we assume
X(1) = X(0) = X, ruling out any influence of D on X.

33
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Graphical Illustration

Figure 3.8: Pretreatment covariates
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• Pretreatment covariates X may influence Y, but (due to random
treatment assignment) neither influence, nor are influenced by
D.

• X may influence/be influenced by unobserved characteristics U
that affect Y (but not D due to treatment randomization).
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Regression Model with Covariates

• To control for covariates, we now include X = (X1, . . . , XK) on the
right-hand side of the regression:

Y = α+ βDD+ βX1X1 + · · ·+ βXKXK + ε (3.61)

• This models the conditional mean outcome given the treatment
and the covariates as:

E[Y|D, X] = α+ βDD+ βX1X1 + · · ·+ βXKXK (3.62)

• The definition of the outcome in the sample is provided by:

Yi = α̂+ β̂DDi + β̂X1Xi1 + · · ·+ β̂XKXiK︸ ︷︷ ︸
Ê[Yi|Di,Xi]

+ε̂i (3.63)

• Some of the variation in Y is now captured by X; therefore, the
residuals ε̂i tend to decrease in absolute magnitude.

35
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Covariates and the Goodness of Fit

• Including covariates yields the following definition of R2:

R2 = Var(Ê[Yi|Di, Xi])
Var(Yi)

(3.64)

• Whenever X partly explains Y, the variation in Y explained by D
and X—and thus R2—is larger than when D is the only regressor.

• The estimated variance of β̂D is reduced, leading to a smaller
standard error and (if β̂D ̸= 0) a higher t-statistic/lower p-value.

• As a result, estimation uncertainty goes down, and statistical
power to detect nonzero ATEs in the population goes up.

36
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Misspecification of the X–Y Relationship

• Even if the influence of X on Y is not linear, β̂D remains a
consistent estimate of the ATE.

• This result comes from the fact that D is not associated with X
due to randomization: D⊥X.

• Thus, the error of incorrectly assuming a linear association
between Y and X does not spill over to the evaluation of the ATE.

• β̂D remains asymptotically unbiased in this case.
• In small samples, misspecification may cause bias, but this bias
vanishes as sample size increases.

• This would not hold if D were not fully randomized, but rather
associated with X.

37
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Bad Controls

• Consider the case where X is affected by D, such that X(1) ̸= X(0).
• In this case, controlling for X does not allow for assessing the
causal effect of D for two reasons:
(1) Part of the causal effect of D on Y may operate via X⇒ controlling

for X conditions part of the effect away.
(2) If both D and U (which also affects Y) have a causal effect on X,

controlling for X introduces a statistical association between D and
U that would not exist otherwise. ⇒ collider bias

D

X

Y

U

Figure 3.9: Posttreatment covariates that are bad controls.
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Example: Birth Weight as a Bad Control

Example
Consider the effect of mothers’ smoking during pregnancy (D) on
children’s postnatal health (Y) using birth weight (X) as a control.

(1) Birth weight may already reflect part of the negative effects of
smoking on a child’s health.

• Controlling for X (e.g., comparing only low-birth-weight children)
conditions away part of the effect of smoking on postnatal health.

(2) Collider bias: Low-birth-weight children of smoking (D = 1) and
nonsmoking mothers (D = 0) are not comparable.

• Low birth weight in newborns of nonsmoking mothers is caused by
other characteristics (U), such as birth defects, which also affect Y.

• Thus, the effect of smoking is mixed with that of birth defects.

⇒ May lead to paradoxical findings, such as smoking appearing to
reduce mortality among newborns with a low birth weight.
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